摘要:
A dye-sensitized solar cell comprising a semiconductor electrode comprising electrospun ultra-fine titanium dioxide fibers and fabrication method thereof are disclosed. The dye-sensitized solar cell comprises a semiconductor electrode comprising an electrospun ultra-fine fibrous titanium dioxide layer, a counter electrode and electrolyte interposed therebetween. A non-liquid electrolyte such as polymer gel electrolyte or the like having low fluidity, as well as the liquid electrolyte, can be easily infiltrated thereinto. In addition, electrons can be effectively transferred since titanium dioxide crystals are one-dimensionally arranged.
摘要:
A dye-sensitized solar cell comprising a semiconductor electrode comprising electrospun ultra-fine titanium dioxide fibers and fabrication method thereof are disclosed. The dye-sensitized solar cell comprises a semiconductor electrode comprising an electrospun ultra-fine fibrous titanium dioxide layer, a counter electrode and electrolyte interposed therebetween. A non-liquid electrolyte such as polymer gel electrolyte or the like having low fluidity, as well as the liquid electrolyte, can be easily infiltrated thereinto. In addition, electrons can be effectively transferred since titanium dioxide crystals are one-dimensionally arranged.
摘要:
A dye-sensitized solar cell comprising a semiconductor electrode comprising electrospun ultra-fine titanium dioxide fibers and fabrication method thereof are disclosed. The dye-sensitized solar cell comprises a semiconductor electrode comprising an electrospun ultra-fine fibrous titanium dioxide layer, a counter electrode and electrolyte interposed therebetween. A non-liquid electrolyte such as polymer gel electrolyte or the like having low fluidity, as well as the liquid electrolyte, can be easily infiltrated thereinto. In addition, electrons can be effectively transferred since titanium dioxide crystals are one-dimensionally arranged.
摘要:
A titanium dioxide nanorod having anisotropy and a preparation method thereof in which, particularly, an ultrafine composite fiber of polymer and titanium dioxide precursor and a single crystal titanium dioxide nanorod using a phase separation are prepared, wherein a mixed solution containing titanium dioxide precursor, polymer which is compatible with the precursor and solvent is prepared, the mixed solution is electrospun to form titanium dioxide polymer composite fiber containing ultrafine fibril structure therein by the phase separation between the titanium dioxide precursor and the polymer, the composite fiber is heat-pressed, and the polymer material is removed from the composite fiber, so as to obtain titanium dioxide nanorod, which can be used as dye-sensitized solar cells, various sensors, and photocatalysts.
摘要:
Disclosed is a solid electrolyte for a dye-sensitized solar cell, which includes a three-dimensional porous thin film made of a hydrophilic polymer material, and a dye-sensitized solar cell using the same. More particularly, the present invention provides a high-efficient dye-sensitized solar cell, in which polymer nanofibers having high specific surface area are used in an electrolyte layer to effectively induce an increase in photocurrent, thereby increasing the amount of electrolyte impregnated. When the porous film prepared by the method of the present invention is used as a solid electrolyte for a dye-sensitized solar cell, a process of forming an electrolyte inlet and sealing the inlet is not required, which simplifies the entire process, compared to an existing dye-sensitized solar cell using a liquid electrolyte.
摘要:
Disclosed is a solid electrolyte for a dye-sensitized solar cell, which includes a three-dimensional porous thin film made of a hydrophilic polymer material, and a dye-sensitized solar cell using the same. More particularly, the present invention provides a high-efficient dye-sensitized solar cell, in which polymer nanofibers having high specific surface area are used in an electrolyte layer to effectively induce an increase in photocurrent, thereby increasing the amount of electrolyte impregnated. When the porous film prepared by the method of the present invention is used as a solid electrolyte for a dye-sensitized solar cell, a process of forming an electrolyte inlet and sealing the inlet is not required, which simplifies the entire process, compared to an existing dye-sensitized solar cell using a liquid electrolyte.