Abstract:
The present invention is a thulium doped silicate glass having an excellent fluorescent emission in the 1.4 μm band, and the usage thereof. The silicate glass of this invention includes: 65˜95 mol % SiO2; 0.5˜30 mol % bivalent metal oxide consisting of one or more material selected from ZnO, BaO, SrO and PbO; and 1˜15 mol % of SnO2 or TiO2, wherein 3˜30 mol % oxygen of the glass composition are replaced with fluorine, and 0.01˜1 mol % of thulium ions are doped, and the fluorescence lifetime of the 3H4 level of the Tm3+ is more than 50 μs. The silicate glass can be easily formed into a waveguide, such as optical fiber, and it has an excellent ability to splice with the optical fiber for transmission. They have excellent chemical durability and the characteristic of 1.4 μm band fluorescent emission by suppressing the non-radiative transition through multi-phonon relaxation. Thus they have long fluorescence lifetime of the 3H4 of Tm3+.
Abstract translation:本发明是在1.4mum带中具有优异的荧光发射的掺doped硅酸盐玻璃及其用途。 本发明的硅酸盐玻璃包括:65〜95摩尔%的SiO 2; 由选自ZnO,BaO,SrO和PbO的一种或多种材料组成的0.5〜30mol%的二价金属氧化物; 和1〜15mol%的SnO 2或TiO 2,其中3〜30mol%的玻璃组合物的氧被氟代替,0.01〜1mol%的 ium离子被掺杂,并且Tm 3+ 3+的“3”4“4”水平的荧光寿命大于50微米。 硅酸盐玻璃可以容易地形成诸如光纤的波导,并且具有极好的与光纤进行接合的传输能力。 它们通过抑制通过多声子弛豫的非辐射跃迁具有优异的化学耐久性和1.4mum带荧光发射的特征。 因此,它们具有Tm 3+ 3+的3 H 4 H 4的长荧光寿命。
Abstract:
The present invention relates to a main wavelength band of a pump light source capable of improving the pump efficiency while using 1.6 μm fluorescence emitted from Ho3+:5I5→5I7 transition as an optical amplifier, and an assistant pump wavelength band capable of accomplishing population inversion between 5I5 level and 5I7 level to improve the signal gain characteristics of such amplifier. The optical amplifier using optical materials to which holmium or holmium and terbium, holmium and europium, holmium and neodymium or holmium and dysprosium, etc. are doped can be pumped using a light source that emits light of 11,200˜11,500 cm−1 or a light source that emits light of 6,000˜6,500 cm−1.
Abstract:
A high-speed wavelength channel selector has properties of relatively easy manufacturing and easy extension to multi-channel integration, and a high-speed space and wavelength multiplexed channel selector uses the high-speed wavelength channel selector. The high-speed wavelength channel selector is integrated with electro-optic waveguide switches of non-crystalline materials, such as electro-optic polymers or glasses, in the middle of a pair of wavelength multiplexer and demultiplexer and the high-speed space and wavelength multiplexed channel selector has the photonic integrated circuit-type composition of a space multiplexed channel selector containing M electro-optic waveguide switches and an M×1 channel combiner, the high-speed wavelength channel selector, optical amplifier and a high-speed wavelength converter.
Abstract:
The present invention relates to a transmission optical fiber. The transmission optical fiber including a core and a cladding made of SiO2 is characterized in that GeO2 and F are doped in SiO2 of the core and the cladding. Therefore, a high Raman gain coefficient could be obtained while a desired dispersion value and a non-linearity are maintained, by controlling the refractive index of the core and the cladding. Further, the pump power of the laser diode could be reduced and the cost of the laser diode could be lowered accordingly. In addition, the life of the laser diode is extended since the laser diode needs not to be operated at a high output.
Abstract:
A planar waveguide-type optical amplifier switch is disclosed. The switch is developed with the purpose of solving the problems that the conventional waveguide-type optical switch, which has been being used in the optical communication technique, has an optical loss and thereby requires an external optical amplifier which makes the whole devices not suitable for forming an integrated compact device. The disclosed switch performs switching function from the refractive index change in the optical waveguides induced by electrical or optical controls as well as amplifying function of the optical signal, when it passes through the waveguides, from use of optical waveguides formed of a fluorescence emitting material with an optical pumping and a wavelength division multiplexing (WDM) optical waveguide-type coupler. The optical amplifier switch scheme, which provides a simultaneous optical switching and amplification in an optical waveguide form, allows the device fabricable in a compact integrated manner and more useful in practical applications. The optical amplifier switch in accordance with the present invention can replace the conventional optical switches of the prior art, and can promote technical development in the areas of high-capacity optical communication systems, massive optical signal processing, optical switching, optical computing, and so on.
Abstract:
An optical amplifier of the present invention is implemented by using a low phonon energy glass doped with praseodymium ions (Pr3+), whereby a wavelength of 1.6 &mgr;m band can be used for an optical transmission. The optical amplifier for amplifying an optical signal includes a low phonon energy optical medium doped with praseodymium ions (Pr3+) for utilizing as a gain medium to the optical signal, and a pumping means for pumping the low phonon energy optical medium, thereby to obtain an amplified optical signal.
Abstract:
Provided are complex optical material that trivalent ytterbium ion is codoped into single crystalline, poly crystalline or amorphous material containing tetravalent chromium ion or trivalent vanadium ion as an active medium, and a using method of the material. In application of the material to solid-state lasers, optical fiber amplifiers and the likes, when excitation occurs in the 980 nm wavelength band in which absorption strongly occurs at the ytterbium ion with avoiding the wavelength range of 600˜800 nm in which the excited-state absorption occurs at the chromium ion, the energy is transferred from the ytterbium ion to the chromium ion to emit fluorescence in the range of 1200˜1600 nm wavelength. Accordingly, the present invention is to solve the problem of the excitation efficiency decrease of the tetravalent chromium ion due to the excited-state absorption and to enhance the fluorescence emission intensity.
Abstract:
The present invention relates to a complex rare-earths doped optical waveguide. In particular, the complex rare-earths doped optical waveguide in accordance with an embodiment of the present invention is for modifying emission spectrum of erbium that is able to obtain gain from shorter wavelength than 1530 nm. A complex rare-earths doped optical wavelength is provided. The complex rare-earths doped optical waveguide in accordence with an embodiment of the present invention includes clad and core. The core is doped with erbium (Er) ion. The internal or surface of the core is doped with at least one complex rare-earth ions. The internal and the surface of the core is distanced by certain length from center of the core.