摘要:
An apparatus for generating an optical fiber laser capable of tuning a wavelength thereof. The apparatus comprises a pump laser to pump the light with changed polarization state, a light amplify fiber to produce a seed light using the pumped light from the pump laser at a certain operation wavelength and thereafter, when said seed light has stable frequency, to put out the light in that wavelength, a dispersion shift fiber to give a non-linear polarization effect to the output light from the light amplify fiber, a linear polarizer to tune the wavelength of the light from the dispersion shift fiber within a wavelength varying range, a light direction controller to give a certain oscillation direction to the tuned light, an optical element converging a light beam, with a cholesteric liquid crystal cell inserted, which transmits only a circularly polarized light having a consistent rotation period with the rotational direction of the liquid crystal surface and reflects all the rest of the light, and an output port to confirm a laser output light beam by putting out a certain portion of the light from said light converging element.
摘要:
A planar waveguide-type optical amplifier switch is disclosed. The switch is developed with the purpose of solving the problems that the conventional waveguide-type optical switch, which has been being used in the optical communication technique, has an optical loss and thereby requires an external optical amplifier which makes the whole devices not suitable for forming an integrated compact device. The disclosed switch performs switching function from the refractive index change in the optical waveguides induced by electrical or optical controls as well as amplifying function of the optical signal, when it passes through the waveguides, from use of optical waveguides formed of a fluorescence emitting material with an optical pumping and a wavelength division multiplexing (WDM) optical waveguide-type coupler. The optical amplifier switch scheme, which provides a simultaneous optical switching and amplification in an optical waveguide form, allows the device fabricable in a compact integrated manner and more useful in practical applications. The optical amplifier switch in accordance with the present invention can replace the conventional optical switches of the prior art, and can promote technical development in the areas of high-capacity optical communication systems, massive optical signal processing, optical switching, optical computing, and so on.
摘要:
A measurement of nonlinear refractive index coefficient of an optical fiber with a Sagnac interferometer, comprises the steps of employing the optical fiber in a Sagnac interferometer, splitting a signal beam into two signals, launching the two split signals into the interferometer in opposite directions, combining and detecting the signals counter-propagated in the interferometer, and detecting the refractive index coefficient of the optical fiber in accordance with the difference between the two signal powers determined by a control beam. The quasi-static phase shift of the signal beam counter-propagating the same paths of the interferometer is induced by rotating the optical fiber loop of the interferometer. The present invention gives rise to little error because it does not require precise information about the pulse width of a used beam or a high-power light.
摘要:
An optical fiber cascaded Raman laser scheme is provided. An optical fiber cascaded Raman laser scheme in accordance with an embodiment of the present invention includes a pump light source, an optical fiber, a wavelength division multiplexing optical fiber combiner, another wavelength division multiplexing optical fiber combiner, a short period optical fiber bragg grating, a long period bragg grating, first means, and second means. The pump light source generates pump light. The optical fiber causes Raman scattering regarding the optical pump light as nonlinear material. The wavelength division multiplexing optical fiber combiner forms intra cavity regarding light of second order stoke frequency shifted wavelength. The light is stoke frequency shifted by Raman scattering of the optical fiber. The another wavelength division multiplexing optical fiber combiner forms intra cavity regarding light of first and third order stoke frequency shifted wavelength. The light is stoke frequency shifted by Raman scattering of the optical fiber. The short period optical fiber bragg grating selects and reflects fourth stoke frequency shifted wavelength of output wavelength in intra cavity. The intra cavity is formed by the wavelength division multiplexing optical fiber combiner. The long period bragg grating causes loss on fifth order stoke frequency shifted wavelength and prevents oscillation. The fifth order is next order of output wavelength of the intra cavity. The first means passes pump light emitted from the pump light source and reflects light of fourth order stoke frequency shifted output wavelength. The first means is connected between the pump light source and the wavelength division multiplexing optical fiber combiner. The second means reflects pump light emitted from the pump light source and passing light of output wavelength.
摘要:
An optical fiber Mach-Zehnder interferometer optical filter is disclosed. The filter includes a stabilization light source for varying a first wavelength of a light signal for stabilizing a Mach-Zehnder interferometer, first and second optical fiber couplers for receiving an optical signal from the stabilization light source and an optical signal of a second wavelength different from a first wavelength inputted from an input port and dividing into two parts having the same intensity for thereby forming a Mach-Zehnder interferometer, a polarization controller connected with one side of the first optical fiber coupler for controlling a polarization of the interfered light of the interferometer, first and second wavelength division multiplex optical couplers connected with the second optical fiber coupler for separately outputting a first wavelength optical signal and a second wavelength optical signal, an optical fiber phase modulator connected with the other side of the first optical fiber coupler for varying the length of the optical fiber in accordance with a fed-back phase difference, and a stabilization circuit for receiving two optical signals of the first wavelength from the first and second wavelength division multiplex optical couplers and feeding back the phase difference to the optical fiber phase modulator for thereby implementing a constant optical path difference of the interferometer.
摘要:
The wavelength tunable mode-locking optical fiber laser comprises non-linear amplifying loop mirror part having a light pumping lase diode, a gain medium doped optical fiber having the gain medium for oscillating the rambling light wave sequentially, a dispersion shifted optical fiber, and first polarization controller for making the continuous oscillation light wave to be maximized by adjusting the polarization of said propagating light. All elements of the non-linear amplifying loop mirror part are combined to each other in loop type on the above clock direction., and linear mirror part having second polarization controller for adjusting the light wave oscillated by the non-linear amplifying loop mirror part to be mode-locked, Faraday rotation mirror for rotating the direction of polarization with degree, an acousto-optic tunable filter for changing the wavelength of the propagating light wave and for passing only the light wave with the defined linewidth, an optical isolator, and the 90:10 optical fiber directional coupler.
摘要:
A wavelength-varying multi-wavelength optical filter laser using a single pump light source is disclosed. The laser comprises a wavelength-division multiplexing coupler for applying an output from a single pump light source, a first multi-branch optical fiber coupler for branching the light from the single pump light source into a plurality of optical paths, an erbium-doped fiber located at each of optical paths, wavelength-varying optical filters located at rear of each erbium-doped fiber in each optical paths, said wavelength-varying optical filters for generating laser outputs of different wavelengths in each optical paths, optical isolators located between the erbium-doped fiber and the wavelength-varying optical filter in each optical paths, said optical isolators for reducing interference between laser outputs to be stable, optic attenuators located at rear of the wavelength-varying optical filter in each optical paths, said attenuators for regulating a mode beating between laser outputs of different wavelengths, thereby causing the multi-wavelength laser oscillation to be possible, a second multi-branch optical fiber coupler for coupling branched-optical paths, and a variable optical fiber coupler located at rear of the second multi-branch optical fiber, said variable optical fiber coupler for regulates a coupling ratio of the second variable optical fiber coupler, thereby making the output thereof to be maximum.
摘要:
Various methods and apparatuses are described for a wavelength division multiplexing passive optical network (WDM-PON) that performs bi-directional communication. The WDM-PON may include two or more remote distribution nodes in between a central office and the most distant optical network unit. Each remote distribution node is located in a physically separate location. A first remote distribution node has two or more optical network units connected to the first remote distribution node. Each remote node separates one or more wavelength channels from a composite optical signal distributed through that remote distribution node.
摘要:
The present invention provides a tunable optical filtering system using fiber-optic polarimetric interferometer. The tunable optical filtering system using fiber-optic polarimetric interferometer in accordance with the present invention comprises a stabilization light source, a first polarization beam splitter, a first optical fiber node, a number of polarization maintaining optical fibers, a phase modulator, a stabilization electronics, a second optical fiber node, a second polarization beam splitter, and two wavelength division optical multiplexers. The stabilization light source supplies stabilization light. The first polarization beam splitter polarizes the stabilization light and the input light to be filtered and generates polarized light. The first optical fiber node connects the output of the first polarization beam splitter with polarization maintaining fibers with the angle of 45 degree between their birefringent axes and splits the polarized light. The number of polarization maintaining optical fibers carries the split light by the first optical fiber node. The phase modulator maintains phase difference between two birefringent axes of the polarization maintaining fibers. The stabilization electronics supply feedback signal to the phase modulator. The second optical fiber node connects the polarization maintaining fibers with the input of second polarization beam splitter with the angle of 45 degree between their birefringent axes, receives split light by said first optical fiber node, and generates interference signals. The second polarization beam splitter divides the interference signals into output signals by polarization axes. The wavelength division optical multiplexers divide the output signals into signals for the stabilization electronics and filtered signals by wavelengths.
摘要:
The present invention provides a demultiplexer for generating a constant four-wave-mixing beam without regard to an input polarization state using a dispersion-shifted fiber that is a nonlinear material with high refractive index. A number of parts in conventional demultiplexer implementations, which are sensitive to input polarization state has been replaced with optical fibers of high polarization mode dispersion.