摘要:
A MOS transistor is formed with a dual-layer silicon oxynitride (SiON) etch stop film that protects the transistor from plasma induced damage (PID) and hot carrier degradation, thereby improving the reliability of the transistors. The first SiON layer is formed with SiH4 at a first flow rate, and the second SiON layer is formed with SiH4 at a second higher flow rate.
摘要:
A MOS transistor is formed with a dual-layer silicon oxynitride (SiON) etch stop film that protects the transistor from plasma induced damage (PID) and hot carrier degradation, thereby improving the reliability of the transistors. The first SiON layer is formed with SiH4 at a first flow rate, and the second SiON layer is formed with SiH4 at a second higher flow rate.
摘要:
An insulating material interposed between two conductive materials can experience plasma process induced damage (PPID) when a plasma process is used to deposit a dielectric onto one of the conductive materials. This PPID can be reduced by reducing electric charge accumulation on the one conductive material during the plasma process dielectric deposition.
摘要:
A metal-to-metal capacitor in a semiconductor integrated circuit is converted to a conductive structure by connecting the first metal plate of the capacitor to ground and the second metal plate of the capacitor to a programming voltage, thus causing the insulator material to breakdown and conduct current from the first plate to the second plate.
摘要:
A method of fabricating integrated circuit structures utilizes selective oxygen implantation to dielectrically isolate semiconductor structures using no extra masks. Existing masks are utilized to introduce oxygen into bulk silicon with subsequent thermal oxide growth. Since the method uses bulk silicon, it is cheaper than silicon-on-insulator (SOI) techniques. It also results in bulk silicon that is latch-up immune.
摘要:
A method of fabricating integrated circuit structures utilizes selective oxygen implantation to dielectrically isolate semiconductor structures using no extra masks. Existing masks are utilized to introduce oxygen into bulk silicon with subsequent thermal oxide growth. Since the method uses bulk silicon, it is cheaper than silicon-on-insulator (SOI) techniques. It also results in bulk-silicon that is latch-up immune.
摘要:
A method of fabricating integrated circuit structures utilizes selective oxygen implantation to dielectrically isolate semiconductor structures using no extra masks. Existing masks are utilized to introduce oxygen into bulk silicon with subsequent thermal oxide growth. Since the method uses bulk silicon, it is cheaper than silicon-on-insulator (SOI) techniques. It also results in bulk-silicon that is latch-up immune.