摘要:
A control circuit ideally suited for a capacitor charging circuit (100) that uses an apparent measure of current flow through a circuit line to regulate current drawn from a battery through the circuit line is disclosed. A summing circuit (136) produces a difference voltage (138) of the battery voltage (152) subtracted from a threshold reference voltage (151). The difference voltage (138) is subsequently amplified by an amplifier (140), rectified by a diode (142), and added to a voltage measure (130) from a current-sense resistor (117) by a summing circuit (128). The resulting voltage measure (126) is an apparent measure of current flow and is provided to a charge controller (122) which regulates current flow through a transformer (107) by controlling the operation of a switch (108). As the voltage on the battery (102) decreases below the reference voltage set by voltage source (150), the increasing difference voltage (138) adds bias to the actual measure of current flow (130), thus providing the charge controller (122) with an apparent measure of current flow through the transformer (107) that is higher than the actual level of current flow. The charge controller is thereby deceived and reduces the current drawn from the battery through the transformer.
摘要:
A battery maintenance and testing system (22) that includes a battery support system (2) that tests, conditions, and charges rechargeable battery packs. The battery support system (22) accommodates a dumb battery (32) that do not have any internal logic by running a default maintenance routine, as well as a smart battery (24, 24') that has internal logic that monitors its condition, keeps track of the time and number of charge discharge cycles the battery has experienced since it was last conditioned, logs any errors that would necessitate the battery being discarded, and stores information relevant to its maintenance and testing. The battery maintenance and testing system (22) is able to communicate with a smart battery (24, 24') to automatically to retrieve this information and use it to condition, test, and charge the battery to optimal condition or to indicate to the user that the battery is defective and needs to be discarded. A user display and interface (43) is also provided on the battery support system that allows the user to manually charge, condition, or test a rechargeable battery pack.
摘要:
A smart battery that self-monitors and maintains information about itself that includes its state of charge, its need for maintenance, and for conditions that indicate that it has reached the end of its useful life and should be discarded. The information maintained by the battery is then either displayed on an on-board display or is communicated to another device on a communication bus. The state of charge quantifies the smart battery's ability to reliably deliver charge to a host device and is dynamically adjusted over the lifetime of the smart battery. The state of charge may not exceed a full charge capacity value maintained by the smart battery and initially set to an estimated value. This full charge capacity value is dynamically adjusted throughout the life of the smart battery using information accumulated and maintained by the smart battery that indicates the smart battery's actual performance during use and by using messages received from a battery maintenance and testing system. The smart battery also accumulates and maintains information that indicates that the smart battery requires maintenance. A battery maintenance and testing system can read this need for maintenance from the smart battery and take the steps necessary to automatically maintain the smart battery. Conditions that indicate that the battery is defective or has exceeded its useful life are also maintained by the smart battery and communicated through the on-board display or to another devices over a communication bus. The battery is specially configured for easy assembly.
摘要:
A smart battery that self-monitors and maintains information about itself that includes its state of charge, its need for maintenance, and for conditions that indicate that it has reached the end of its useful life and should be discarded. The information maintained by the battery is then either displayed on an on-board display or is communicated to another device on a communication bus. The state of charge quantifies the smart battery's ability to reliably deliver charge to a host device and is dynamically adjusted over the lifetime of the smart battery. The state of charge may not exceed a full charge capacity value maintained by the smart battery and initially set to an estimated value. This full charge capacity value is dynamically adjusted throughout the life of the smart battery using information accumulated and maintained by the smart battery that indicates the smart battery's actual performance during use and by using messages received from a battery maintenance and testing system. The smart battery also accumulates and maintains information that indicates that the smart battery requires maintenance. A battery maintenance and testing system can read this need for maintenance from the smart battery and take the steps necessary to automatically maintain the smart battery. Conditions that indicate that the battery is defective or has exceeded its useful life are also maintained by the smart battery and communicated through the on-board display or to another devices over a communication bus. The battery is specially configured for easy assembly.