Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in phyla Nematoda, Arthropoda, and/or Mollusca, processes to produce such molecules and intermediates used in such processes, compositions containing such molecules, and processes of using such molecules against such pests. These molecules may be used, for example, as nematicides, acaricides, insecticides, miticides, and/or molluscicides. This document discloses molecules having the following formula (“Formula One” and “Formula Two”).
Abstract:
The invention in this document is related to the field of preparation of 1,3-(substituted-diaryl)-1,2,4-triazoles and certain intermediates derived therefrom, where said intermediates are useful in the preparation of certain pesticides disclosed in U.S. Pat. No. 8,178,658.
Abstract:
The invention in this document is related to the field of preparation of 1,3-(substituted-diaryl)-1,2,4-triazoles and certain intermediates derived therefrom, where said intermediates are useful in the preparation of certain pesticides disclosed in U.S. Pat. No. 8,178,658.
Abstract:
Aryl boronic esters and boronic acids containing the rhamnose carbamate moiety are coupled to a triazole with an appropriate leaving group, generating a 4-triazolylphenyl carbamate in good yield and without cleavage of the carbamate linkage.
Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, compositions containing such molecules, and processes of using such molecules and compositions against such pests. These molecules and compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Abstract:
Aryl boronic esters containing the rhamnose carbamate moiety are prepared in good yield and without cleavage of the carbamate linkage by first contacting p-bromophenyl isocyanate with a tetrahydropyran-2-ol followed by reaction with a diboron compound.
Abstract:
A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
Abstract:
A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
Abstract:
A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.