摘要:
The present invention provides a method for producing a controlled output voltage for a switching power converter under current control using pulse width modulation, the switching power converter including a predictive digital current-mode controller and a digital pulse width modulator. The current control results in an unstable output voltage, and the pulse width modulation method is selected to eliminate the instability of the output voltage.
摘要:
The present invention provides a method for producing a controlled output voltage for a switching power converter under current control using pulse width modulation, the switching power converter including a predictive digital current-mode controller and a digital pulse width modulator. The current control results in an unstable output voltage, and the pulse width modulation method is selected to eliminate the instability of the output voltage.
摘要:
A controller produces high-side and low-side control signals. The high and low-side signals are used to switch high-side and low-side transistors in the power stage to control the voltage across the power stage output capacitor of the power stage. A boost feedback charge pump receives the low or high-side signal to increase the charge on a charge pump output capacitor. The controller is configured to send Pulse Frequency Modulation (PFM) high and low-side signals that control the voltage on the power stage output capacitor and charge the charge pump output capacitor. The controller is also configured to send boost feedback (BFB) high and low-side signals that charge the boost feedback capacitor, but are designed to not significantly change the charge on the power stage output capacitor.
摘要:
A multichannel digital pulse width modulator/digital pulse frequency modulator uses a single ring oscillator that is shared by multiple channels. The ring oscillator has taps that can be used for least significant bit (LSB) precision of the generated PWM signal. The ring oscillator also produces a ring clock that is used to synchronize logic in the channels. Since the logic in the channels are synchronized by the ring clock, the channels can each independently produce different frequency PWM (or PFM) signals and still share the same ring oscillator.
摘要:
A controller produces high-side and low-side control signals. The high and low-side signals are used to switch high-side and low-side transistors in the power stage to control the voltage across the power stage output capacitor of the power stage. A boost feedback charge pump receives the low or high-side signal to increase the charge on a charge pump output capacitor. The controller is configured to send Pulse Frequency Modulation (PFM) high and low-side signals that control the voltage on the power stage output capacitor and charge the charge pump output capacitor. The controller is also configured to send boost feedback (BFB) high and low-side signals that charge the boost feedback capacitor, but are designed to not significantly change the charge on the power stage output capacitor.
摘要:
The voltage applied to an integrated circuit is controlled by a temporal process monitor formed as part of the integrated circuit. The temporal process monitor includes a voltage controlled oscillator for producing a first output signal having a first period. A comparator compares the first period to one or more reference values. Should the first period be greater than a first selected reference value the comparator sends a signal to increase the voltage being supplied to the integrated circuit. Should the first period be less than a second selected reference value, the comparator sends a signal to decrease the voltage applied to the integrated circuit. In some embodiments a scaling circuit is provided for producing a second output signal having a second period different from (typically but not necessarily longer than) the first period. By placing the temporal process monitor on an integrated circuit chip, process variations and environmental factors which affect the performance of the integrated circuit can be automatically compensated so that the integrated circuit performs within specifications. Two or more temporal process monitors can be placed on a single integrated circuit chip or on different integrated circuit chips and the longest period produced by the temporal process monitors can be used to control the voltage supplied to all the sections of the integrated circuit chip associated with the temporal process monitors or to all the integrated circuit chips associated with the temporal process monitors.
摘要:
A digital pulse controller uses digital logic to send pulses to a high side and low side switches of a switch-mode power supply converter. The digital logic uses a pulse frequency mode which includes a frequency targeting mode and an ultrasonic mode. The frequency targeting mode dynamically adjusts the size of the pulses in order to achieve a switching frequency within a desired band. The ultrasonic mode is switched into when the frequency of the pulses are at or below a threshold and the time of the pulses reaches a minimum threshold.
摘要:
A multichannel digital pulse width modulator/digital pulse frequency modulator uses a single ring oscillator that is shared by multiple channels. The ring oscillator has taps that can be used for least significant bit (LSB) precision of the generated PWM signal. The ring oscillator also produces a ring clock that is used to synchronize logic in the channels. Since the logic in the channels are synchronized by the ring clock, the channels can each independently produce different frequency PWM (or PFM) signals and still share the same ring oscillator.