摘要:
According to one embodiment of the invention, a flow conditioning system for fluid jetting tools includes a housing having a plurality of jet nozzle openings and a fluid straightener disposed within the housing. The fluid straightener is defined by one or more vanes, and the vanes form a plurality of flow channels within the housing. Each flow channel is associated with at least one jet nozzle opening.
摘要:
Methods of initiating a fracture tip screenout, that comprise pumping an annulus fluid into an annulus, between the subterranean formation and a work string disposed within a wellbore penetrating the subterranean formation, at an annulus flow rate; and reducing the annulus flow rate below a fracture initiation flow point so that the fracture tip screenout is initiated in the one or more fractures in the subterranean formation, are provided. Also provided are methods of fracturing a portion of a subterranean formation and methods of estimating a fracture initiation flow point.
摘要:
The invention relates to methods and apparatus for creating multiple fractures in subterranean formations. The apparatus is a jetting tool having a plurality of sets of jetting nozzles so that the sets of nozzles are substantially parallel to one another such that parallel cavities may be formed substantially simultaneously in the formation. The jetting nozzles may be adapted to provide a fluid jet that flares outwardly from the nozzle. The nozzles also may be aligned such that cavities in the formation overlap to form a single cavity. The nozzles may be further adapted so that holes jetted into the casing thereby are still spaced from one another. Methods of fracturing subterranean formations using the apparatus are also disclosed.
摘要:
A bottomhole assembly (BHA) and method for stimulating a well includes setting a packer of the BHA in a wellbore. The BHA includes the packer and a jetting tool coupled to a tubing string. Process fluid is pumped down the tubing string and jetted with the jetting tool to perforate a formation. Stimulation process fluid is pumped down an annulus of the wellbore to fracture the formation.
摘要:
The present invention is directed to a method of isolating hydrajet stimulated zones from subsequent well operations. The method includes the step of drilling a wellbore into the subterranean formation of interest. Next, the wellbore may or may not be cased depending upon a number of factors including the nature and structure of the subterranean formation. Next, the casing, if one is installed, and wellbore are perforated using a high pressure fluid being ejected from a hydrajetting tool. A first zone of the subterranean formation is then fractured and stimulated. Next, the first zone is temporarily plugged or partially sealed by installing an isolation fluid into the wellbore adjacent to the one or more fractures and/or in the openings thereof, so that subsequent zones can be fractured and additional well operations can be performed.
摘要:
The present invention is directed to a method of isolating hydrajet stimulated zones from subsequent well operations. The method includes the step of drilling a wellbore into the subterranean formation of interest. Next, the wellbore may or may not be cased depending upon a number of factors including the nature and structure of the subterranean formation. Next, the casing, if one is installed, and wellbore are perforated using a high pressure fluid being ejected from a hydrajetting tool. A first zone of the subterranean formation is then fractured and stimulated. Next, the first zone is temporarily plugged or partially sealed by installing an isolation fluid into the wellbore adjacent to the one or more fractures and/or in the openings thereof, so that subsequent zones can be fractured and additional well operations can be performed.
摘要:
A method of servicing a subterranean formation comprising placing a wellbore servicing system within a wellbore penetrating the subterranean formation, wherein the wellbore servicing system comprises a first activatable stimulation assembly and a second activatable stimulation assembly incorporated within a tubular string, configuring the wellbore servicing system to provide a route of fluid communication from the first activatable stimulation assembly to a first zone of the subterranean formation, introducing a treatment fluid into the first zone of the subterranean formation via the first activatable stimulation assembly, and embedding a first portion of the wellbore servicing system within the wellbore.
摘要:
A well bore servicing apparatus comprising a housing having a longitudinal axis and a through bore, and a movable member disposed in the housing, the movable member having a through bore and a fluid aperture therein, wherein the movable member is movable between a first stop position and a second stop position relative to the housing, wherein the fluid aperture is in fluid communication with the housing through bore and the movable member through bore to provide a fluid stream to the well bore in the first and second axially spaced stop positions.
摘要:
The present invention is directed to a method and apparatus for fracturing a subterranean formation which use a liner fracturing tool. The liner fracturing tool consists of a liner, with at least one jet extending through the liner. During fracturing operations, fracturing fluid is pressured through the jet to form microfractures. Fractures are formed by the stagnation pressure of the fracturing fluid. The jets may be mounted within a jet holder that may be dissolved following fracturing operations to allow reservoir hydrocarbons to flow into the liner more readily.
摘要:
A wellbore completion design is provided, which creates a convective flow action that separates water and sand from hydrocarbons during production of the hydrocarbons from a subterranean formation. A deviated section of the wellbore creates the desired effect. The wellbore completion design may include a secondary bore, which intersects the deviated section of the wellbore at an acute angle, to accumulate the separated water and sand. An injection pump disposed in the toe section of the secondary bore can also be employed to pump the water back into the water containing portion of the subterranean formation. If solids are present in more than trace amounts, the toe section of the secondary bore may be formed at an acute angle to the remaining portion of the secondary bore to prevent blockage of the pump. Alternatively, a tertiary bore may be provided, so that the solids can accumulate in the secondary bore and the water can flow into the tertiary bore.