Abstract:
A hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to the cracker feed. More specifically the-pyoil is present in said feedstock in an amount of not more than 20% by weight, based on the total weight of the feedstock.
Abstract:
A hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to the cracker feed. More specifically cracking the cracker feedstock in said cracker furnace to provide an olefin-containing effluent stream; wherein the hydrocarbon composition is predominantly ethane.
Abstract:
Cyclic acetals can be produced in a reactive distillation apparatus by combining a polyhydroxyl compound and an aldehyde. High concentrations of cyclic acetals are removed as liquid products from the column while water is removed as an overhead vapor stream.
Abstract:
This invention is generally directed to a batch process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol comprising: (A) treatment of at least one monomer selected from 2,2,4,4-tetramethylcyclobutane-1,3-dione, 3-hydroxy-2,2,4,4-tetramethylcyclobutanone, and 2,2,4,4-tetramethylcyclobutane-1,3-diol said diol having a starting cis:trans molar ratio of 0:1 to about 2:1, or mixtures thereof by contacting said monomer(s) with hydrogen in the presence of a reaction solvent in which the resulting cis-2,2,4,4-tetramethylcyclobutane-1,3-diol is partially soluble and further in the presence of a catalyst comprising about 0.1 to about 10 weight percent ruthenium, based on the total weight of the catalyst, deposited on a support material, under reaction conditions sufficient to produce a cis-2,2,4,4-tetramethylcyclobutane-1,3-diol having a final cis:trans molar ratio of from 2:1 to about 25:1; (B) removal of the reaction solvent, whether by filtration, centrifugation, or other methods known to one of ordinary skill in the art; (C) dissolution of the 2,2,4,4-tetramethylcyclobutane-1,3-diol with at least one solvent; and, optionally, (D) washing the catalyst at least once, and optionally, (E) reuse of the catalyst.
Abstract:
The invention relates to ruthenium-rhenium-tin and ruthenium-rhenium catalysts effective for the reduction of carboxylic acids to the corresponding alcohols and processes for the reduction of carboxylic acids to the corresponding alcohols using the ruthenium-rhenium-tin and ruthenium-rhenium catalysts.
Abstract:
Recycle content pyoil is cracked in a cracker furnace to make olefins and the coil outlet temperature of the r-pyoil fed coils can be lowered by adding r-pyoil to the cracker feedstock, or alternatively, the coil outlet temperature of the r-pyoil fed tubes can rise if the mass flow rates of the combined cracker stream containing r-pyoil are kept the same or lowered. Further, increasing the hydrocarbon mass flow rate by addition of r-pyoil can be achieved to also increase the output of ethylene and propylene in the cracker effluent. The cracker furnace can accept ethane and/or propane feedstocks in vapor form along with a liquid and/or vapor feed of r-pyoil.
Abstract:
A predominantly C2 to C4 hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to a first coil while a second cracker feed with none of the r-pyoil or less of the r-pyoil is fed to a second coil, and both are cracked in a cracker furnace to form an olefin-containing effluent stream. Alternatively, the r-pyoil can be fed and distributed across multiple coils along with the non-recycle cracker feed. The furnace can be a gas fed furnace, or split cracker furnace. Further, a first cracker stream with r-pyoil in a first coil can have a lower total molar flow rate than a second cracker stream in a second coil in the same furnace.
Abstract:
A hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to the cracker feed. Alternatively, the r-pyoil with a predominantly c8+ fraction can be fed to the cracker feed. The furnace can be a gas fed furnace, or split cracker furnace.
Abstract:
A hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to the cracker feed. More specifically the-pyoil is present in said feedstock in an amount of not more than 20% by weight, based on the total weight of the feedstock.
Abstract:
This invention is generally directed to a process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol comprising: treatment of at least one monomer selected from 2,2,4,4-tetramethylcyclobutane-1,3-dione, 3-hydroxy-2,2,4,4-tetramethylcyclobutanone, and 2,2,4,4-tetramethylcyclobutane-1,3-diol said diol having a starting cis:trans molar ratio of 0:1 to about 2:1, or mixtures thereof by contacting said monomer(s) with hydrogen in the presence of a reaction solvent in which the resulting cis-2,2,4,4-tetramethylcyclobutane-1,3-diol is partially soluble and further in the presence of a catalyst comprising about 0.1 to about 10 weight percent ruthenium, based on the total weight of the catalyst, deposited on a support material, under reaction conditions sufficient to produce a cis-2,2,4,4-tetramethylcyclobutane-1,3-diol having a final cis:trans molar ratio of from 2:1 to about 25:1.