Abstract:
This invention is generally directed to a batch process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol comprising: (A) treatment of at least one monomer selected from 2,2,4,4-tetramethylcyclobutane-1,3-dione, 3-hydroxy-2,2,4,4-tetramethylcyclobutanone, and 2,2,4,4-tetramethylcyclobutane-1,3-diol said diol having a starting cis:trans molar ratio of 0:1 to about 2:1, or mixtures thereof by contacting said monomer(s) with hydrogen in the presence of a reaction solvent in which the resulting cis-2,2,4,4-tetramethylcyclobutane-1,3-diol is partially soluble and further in the presence of a catalyst comprising about 0.1 to about 10 weight percent ruthenium, based on the total weight of the catalyst, deposited on a support material, under reaction conditions sufficient to produce a cis-2,2,4,4-tetramethylcyclobutane-1,3-diol having a final cis:trans molar ratio of from 2:1 to about 25:1; (B) removal of the reaction solvent, whether by filtration, centrifugation, or other methods known to one of ordinary skill in the art; (C) dissolution of the 2,2,4,4-tetramethylcyclobutane-1,3-diol with at least one solvent; and, optionally, (D) washing the catalyst at least once, and optionally, (E) reuse of the catalyst.
Abstract:
Formaldehyde is a common component of antimicrobial compositions for preserving animal feeds. However, the use of formaldehyde is coming under pressure and alternative antimicrobial compositions are needed. The present application discloses methods and/or uses of a formaldehyde-free antimicrobial composition comprising formic acid and propionic acid in the making of rendered animal protein compositions or in the inhibiting of the development of Salmonella bacteria in animal by-product compositions (e.g., rendered animal proteins) while maintaining higher protein digestibility comparing with formaldehyde.
Abstract:
A plasticizer has been identified that improves compatibility in PVC formulations where secondary plasticizers and viscosity modifiers are present. In general, 1,2- or 1,4-dialkyl cyclohexane dicarboxylate plasticizers exhibit poor compatibility, as evidenced by increased exudation, in the presence of secondary plasticizers, i.e. chlorinated paraffins and hydrocarbon-based viscosity modifiers. We have found that bis 1,4-(2-ethylhexyl) cyclohexane dicarboxylate (DOCH) displays the opposite behavior, showing greater compatibility in the presence of these compounds than most other 1,2- or 1,4-dialkyl cyclohexane dicarboxylate derivatives (i.e. DINCH) or blends of fast-fuser/general purpose plasticizers.
Abstract:
Sliver containing cellulose acetate staple fibres is obtained that exhibits good fibre to fibre cohesion energy and can be successfully drawn and made into spun yarns. Such slivers can be made of cellulose acetate staple fibres that have of round shape, a denier of less than 3.0, a crimp frequency per inch (CPI) from 5 to 30, a good fibre to fibre coefficient of friction and have a low static charge. The textile fabrics made from spun yarns have plant-based renewable resources by containing the cellulose acetate staple fibres, and can exhibit a thermoplastic behaviour to impart better dimensional stability to a textile fabric. The low denier of the cellulose acetate fibres can impart a feel similar to that of cotton, yet can be successfully processed through carding machines to form cohesive slivers and retain their integrity throughout the drawing process, allowing them to be formed into spun yarns.
Abstract:
This invention is generally directed to a process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol comprising: treatment of at least one monomer selected from 2,2,4,4-tetramethylcyclobutane-1,3-dione, 3-hydroxy-2,2,4,4-tetramethylcyclobutanone, and 2,2,4,4-tetramethylcyclobutane-1,3-diol said diol having a starting cis:trans molar ratio of 0:1 to about 2:1, or mixtures thereof by contacting said monomer(s) with hydrogen in the presence of a reaction solvent in which the resulting cis-2,2,4,4-tetramethylcyclobutane-1,3-diol is partially soluble and further in the presence of a catalyst comprising about 0.1 to about 10 weight percent ruthenium, based on the total weight of the catalyst, deposited on a support material, under reaction conditions sufficient to produce a cis-2,2,4,4-tetramethylcyclobutane-1,3-diol having a final cis:trans molar ratio of from 2:1 to about 25:1.