Abstract:
An inter-pole drive bar in accordance with the disclosed and claimed concept is usable to extend among a plurality of poles of an improved switch apparatus and to cause the plurality of poles to be together moved between a CLOSED position and an OPEN position. The inter-pole drive bar is elongated and has a plurality of connection points that are connectable with the poles and further includes a number of features that avoid engagement or other interference between the inter-pole drive bar and the various structures of the switch apparatus. The inter-pole drive bar includes an elongated linkage element whose movement between the CLOSED and OPEN positions of the switch apparatus are primarily translation of the linkage element in a direction generally parallel with its longitudinal extent and translation of the linkage element in a direction generally perpendicular to its longitudinal extent.
Abstract:
An electrical enclosure apparatus includes a protective apparatus that permits forced-air cooling of the interior of the enclosure while resisting structures that are within in the interior from being blown out of the electrical enclosure as a result of an arc event or other event. The protective apparatus includes a flow apparatus formed from one or more blocks of ceramic material having formed therein a plurality of elongated flow channels. The flow apparatus is supported inside a duct with the use of a support apparatus. The ceramic material from which the flow apparatus is formed is configured to withstand the heat that may be experienced in an arc event and is additionally configured to be sufficiently rigid and tough to retain within the duct any structures within the enclosure from being blown out of the protective apparatus, thereby protecting personnel who may be in the area.
Abstract:
A component is for an electric power system. The component includes: a user access panel; a first element for directing visible light; a second element for directing visible light, the second end of the first element facing the second end of the second element; a movable conductor structured to move between a first position and a second position; and a stationary conductor structured to engage the movable conductor. In the first position the movable conductor is disposed between the second end of the first element and the second end of the second element, thereby blocking visible light from passing from the first element to the second element. In the second position the movable conductor is not disposed between the second end of the first element and the second end of the second element, thereby permitting visible light to pass from the first element to the second element.
Abstract:
A component is for an electric power system. The component includes: a user access panel; a first element for directing visible light; a second element for directing visible light, the second end of the first element facing the second end of the second element; a movable conductor structured to move between a first position and a second position; and a stationary conductor structured to engage the movable conductor. In the first position the movable conductor is disposed between the second end of the first element and the second end of the second element, thereby blocking visible light from passing from the first element to the second element. In the second position the movable conductor is not disposed between the second end of the first element and the second end of the second element, thereby permitting visible light to pass from the first element to the second element.
Abstract:
An electrical enclosure apparatus includes a protective apparatus that permits forced-air cooling of the interior of the enclosure while resisting structures that are within in the interior from being blown out of the electrical enclosure as a result of an arc event or other event. The protective apparatus includes a flow apparatus formed from one or more blocks of ceramic material having foamed therein a plurality of elongated flow channels. The flow apparatus is supported inside a duct with the use of a support apparatus. The ceramic material from which the flow apparatus is formed is configured to withstand the heat that may be experienced in an arc event and is additionally configured to be sufficiently rigid and tough to retain within the duct any structures within the enclosure from being blown out of the protective apparatus, thereby protecting personnel who may be in the area.
Abstract:
An electrical enclosure apparatus includes a protective apparatus that permits forced-air cooling of the interior of the enclosure while resisting structures that are within in the interior from being blown out of the electrical enclosure as a result of an arc event or other event. The protective apparatus includes a flow apparatus formed from one or more blocks of ceramic material having formed therein a plurality of elongated flow channels. The flow apparatus is supported inside a duct with the use of a support apparatus. The ceramic material from which the flow apparatus is formed is configured to withstand the heat that may be experienced in an arc event and is additionally configured to be sufficiently rigid and tough to retain within the duct any structures within the enclosure from being blown out of the protective apparatus, thereby protecting personnel who may be in the area.
Abstract:
An inter-pole drive bar in accordance with the disclosed and claimed concept is usable to extend among a plurality of poles of an improved switch apparatus and to cause the plurality of poles to be together moved between a CLOSED position and an OPEN position. The inter-pole drive bar is elongated and has a plurality of connection points that are connectable with the poles and further includes a number of features that avoid engagement or other interference between the inter-pole drive bar and the various structures of the switch apparatus. The inter-pole drive bar includes an elongated linkage element whose movement between the CLOSED and OPEN positions of the switch apparatus are primarily translation of the linkage element in a direction generally parallel with its longitudinal extent and translation of the linkage element in a direction generally perpendicular to its longitudinal extent.