Abstract:
A contact assembly for an electrical component includes: a bus member; and a switching assembly structured to move between first and second positions. The switching assembly includes: a stationary contact extending from the bus member, a movable contact engaging the stationary contact when the switching assembly is in the first position and disengaging the stationary contact when the switching assembly moves toward the second position, and a switching device coupled to the bus member. When the switching assembly is in the first position, the switching device and the stationary contact are electrically connected in parallel with the bus member and the movable contact. When the switching assembly moves from the first position toward the second position, the switching device disconnects power after the movable contact disengages the stationary contact in order that electrical disconnection between the bus member and the movable contact occurs within the switching device.
Abstract:
An improved conduit apparatus in accordance with the disclosed and claimed concept includes one or more conduits that each enclose therein an electrical conductor that carries a phase of a multi-phase electrical supply. The conduits are connected to the walls of the electrical enclosures with an attachment apparatus that extends between the conduits and the walls of the electrical enclosures. A clamp apparatus retains the electrical conductors in a state of tension within an interior region of the conduits in a position spaced from the walls of the conduits.
Abstract:
A component is for an electric power system. The component includes: a user access panel; a first element for directing visible light; a second element for directing visible light, the second end of the first element facing the second end of the second element; a movable conductor structured to move between a first position and a second position; and a stationary conductor structured to engage the movable conductor. In the first position the movable conductor is disposed between the second end of the first element and the second end of the second element, thereby blocking visible light from passing from the first element to the second element. In the second position the movable conductor is not disposed between the second end of the first element and the second end of the second element, thereby permitting visible light to pass from the first element to the second element.
Abstract:
A component is for an electric power system. The component includes: a user access panel; a first element for directing visible light; a second element for directing visible light, the second end of the first element facing the second end of the second element; a movable conductor structured to move between a first position and a second position; and a stationary conductor structured to engage the movable conductor. In the first position the movable conductor is disposed between the second end of the first element and the second end of the second element, thereby blocking visible light from passing from the first element to the second element. In the second position the movable conductor is not disposed between the second end of the first element and the second end of the second element, thereby permitting visible light to pass from the first element to the second element.
Abstract:
An improved conduit apparatus in accordance with the disclosed and claimed concept includes one or more conduits that each enclose therein an electrical conductor that carries a phase of a multi-phase electrical supply. The conduits are connected to the walls of the electrical enclosures with an attachment apparatus that extends between the conduits and the walls of the electrical enclosures. A clamp apparatus retains the electrical conductors in a state of tension within an interior region of the conduits in a position spaced from the walls of the conduits.
Abstract:
An electrical disconnect includes a housing having a recess defined therein extending from an opening toward a base. The disconnect also includes a vacuum envelope defined within the housing near the base; a fixed contact assembly including a fixed contact structured to be in electrical communication with a voltage source disposed partially within the vacuum envelope; and a movable contact assembly including a movable contact having a first end disposed within the vacuum envelope and a second end disposed in the recess near the base and movable between a closed position in electrical contact with the fixed contact and an open position spaced apart from the fixed contact a separation distance. The housing includes a dynamic shield electrically connected to the movable contact, the dynamic shield being disposed about the recess within the housing and extending from the base toward the opening thereof.
Abstract:
An adjustable wireway assembly for use in an electrical enclosure includes a panel structured to form a portion of the electrical enclosure, the panel having a first aperture defined therein. The assembly further includes a plate member selectively coupled to the panel about a portion of the first aperture in at least one of a first position and a second position in a manner that blocks at least a portion of the first aperture and thereby defines a second aperture formed from a portion of the first aperture. When coupled in the first position, the second aperture is of a first area and when coupled in the second position, the second aperture is of a second area different than the first area.
Abstract:
An improved conduit apparatus in accordance with the disclosed and claimed concept includes one or more conduits that each enclose therein an electrical conductor that carries a phase of a multi-phase electrical supply. The conduits are connected to the walls of the electrical enclosures with an attachment apparatus that extends between the conduits and the walls of the electrical enclosures. A clamp apparatus retains the electrical conductors in a state of tension within an interior region of the conduits in a position spaced from the walls of the conduits.
Abstract:
An arc management system for an electrical enclosure assembly is provided. The electrical enclosure assembly includes a housing assembly and a conductive bus assembly. The arc management system includes a number of conductive bus extension assemblies, a number of first and second arc horn assemblies, and a number of ground conductor assemblies. Each conductive bus extension assembly includes a conductive member coupled to the conductive bus assembly. Each first arc horn assembly includes a conductive arc horn member. Each first arc horn member is in electrical communication with an associated bus extension conductive member. Each second arc horn assembly includes a conductive arc horn member. Each ground conductor assembly includes a ground conductive member. Each second arc horn member in electrical communication with an associated ground conductor assembly ground conductive member. Each first arc horn member is associated with a second arc horn member and disposed an effective distance therefrom.
Abstract:
An arc management system for an electrical enclosure assembly is provided. The electrical enclosure assembly includes a housing assembly and a conductive bus assembly. The arc management system includes a number of conductive bus extension assemblies, a number of first and second arc horn assemblies, and a number of ground conductor assemblies. Each conductive bus extension assembly includes a conductive member coupled to the conductive bus assembly. Each first arc horn assembly includes a conductive arc horn member. Each first arc horn member is in electrical communication with an associated bus extension conductive member. Each second arc horn assembly includes a conductive arc horn member. Each ground conductor assembly includes a ground conductive member. Each second arc horn member in electrical communication with an associated ground conductor assembly ground conductive member. Each first arc horn member is associated with a second arc horn member and disposed an effective distance therefrom.