Abstract:
An apparatus includes a magnetizing circuit configured to be coupled to a transformer and to selectively provide a magnetizing current to the transformer and a control circuit configured to cause the magnetizing circuit to provide the magnetizing current following disconnection of the primary winding of the transformer from the power source. The magnetizing circuit may be configured to provide the magnetizing current from a first source following disconnection of the primary winding from a second source. The transformer may include a first transformer and the apparatus may further include a second, higher impedance transformer coupled between the second source and the first transformer. In further embodiments, the magnetizing circuit may include a solid-state converter.
Abstract:
An adjustable frequency drive including a number of power modules and a heat management system is provided. Each of the number of power modules includes a number of inverters. Each inverter includes a number of power poles. The heat management system includes a housing assembly, a first heat management assembly, and a second heat management assembly. The housing assembly defines a power module enclosure and a liquid cooling assembly enclosure. The first heat management assembly is substantially disposed in the power module enclosure. The second heat management assembly is not substantially disposed in the power module enclosure.
Abstract:
A protection system for an electrical apparatus is disclosed. The protection system includes a baffle assembly and a coating for electrical elements exposed to arc gasses. The baffle assembly includes a number of generally planar sidewalls, each sidewall including a first edge surface, a second edge surface, and a third edge surface. The sidewalls are disposed in a spaced, generally parallel configuration defining a number of channels. A first end wall, is sealingly coupled to each sidewall first edge. A second end wall is sealingly coupled to each sidewall second edge. A third end wall is sealingly coupled to each sidewall third edge. The terminals of an electrical apparatus are disposed in an aligned set with one set of terminals in each channel. The channels are structured to limit the flow of arc gasses across adjacent sets of terminals.
Abstract:
A protection system for an electrical apparatus is disclosed. The protection system includes a baffle assembly and a coating for electrical elements exposed to arc gasses. The baffle assembly includes a number of generally planar sidewalls, each sidewall including a first edge surface, a second edge surface, and a third edge surface. The sidewalls are disposed in a spaced, generally parallel configuration defining a number of channels. A first end wall, is sealingly coupled to each sidewall first edge. A second end wall is sealingly coupled to each sidewall second edge. A third end wall is sealingly coupled to each sidewall third edge. The terminals of an electrical apparatus are disposed in an aligned set with one set of terminals in each channel. The channels are structured to limit the flow of arc gasses across adjacent sets of terminals.
Abstract:
An apparatus includes a magnetizing circuit configured to be coupled to a transformer and to selectively provide a magnetizing current to the transformer and a control circuit configured to cause the magnetizing circuit to provide the magnetizing current following disconnection of the primary winding of the transformer from the power source. The magnetizing circuit may be configured to provide the magnetizing current from a first source following disconnection of the primary winding from a second source. The transformer may include a first transformer and the apparatus may further include a second, higher impedance transformer coupled between the second source and the first transformer. In further embodiments, the magnetizing circuit may include a solid-state converter.
Abstract:
A protection system for an electrical apparatus is disclosed. The protection system includes a baffle assembly and a coating for electrical elements exposed to arc gases. The baffle assembly includes a number of generally planar sidewalls, each sidewall including a first edge surface, a second edge surface, and a third edge surface. The sidewalls are disposed in a spaced, generally parallel configuration defining a number of channels. A first end wall is sealingly coupled to each sidewall first edge. A second end wall is sealingly coupled to each sidewall second edge. A third end wall is sealingly coupled to each sidewall third edge. The terminals of an electrical apparatus are disposed in an aligned set with one set of terminals in each channel. The channels are structured to limit the flow of arc gases across adjacent sets of terminals.
Abstract:
A system includes a variable frequency drive (VFD) comprising an inverter having an output configured to be coupled to a motor and a switch configured to couple a power source to the motor to bypass the VFD. The system further includes a control circuit configured to synchronize the VFD to the power source, to operate the switch to couple the power source and the VFD in parallel and to subsequently disable the inverter responsive to a current of the inverter. In some embodiments, a PWM frequency of the VFD may be temporarily increased when transferring the motor from the power source to the VFD.
Abstract:
An electrical system includes a transformer structured to be selectively coupled to an AC source that provides a main AC voltage, the transformer having a number of sets of primary windings and a number of sets of secondary windings, and a charging module structured to generate a magnetizing AC voltage. The charging module is structured to selectively provide the magnetizing AC voltage to: (i) one of the number of sets primary windings, or (ii) one of the number of sets secondary windings. The magnetizing AC voltage is such that responsive to the magnetizing AC voltage being provided to one of the number of sets of primary windings or one of the number of sets of secondary windings, one or more of the number of sets of primary windings will be magnetized in a manner wherein a flux of the one or more of the number of primary windings is in phase with the main AC voltage provided from the AC source.
Abstract:
An adjustable frequency drive including a number of power modules and a heat management system is provided. Each of the number of power modules includes a number of inverters. Each inverter includes a number of power poles. The heat management system includes a housing assembly, a first heat management assembly, and a second heat management assembly. The housing assembly defines a power module enclosure and a liquid cooling assembly enclosure. The first heat management assembly is substantially disposed in the power module enclosure. The second heat management assembly is not substantially disposed in the power module enclosure.
Abstract:
A protection system for an electrical apparatus is disclosed. The protection system includes a baffle assembly and a coating for electrical elements exposed to arc gases. The baffle assembly includes a number of generally planar sidewalls, each sidewall including a first edge surface, a second edge surface, and a third edge surface. The sidewalls are disposed in a spaced, generally parallel configuration defining a number of channels. A first end wall is sealingly coupled to each sidewall first edge. A second end wall is sealingly coupled to each sidewall second edge. A third end wall is sealingly coupled to each sidewall third edge. The terminals of an electrical apparatus are disposed in an aligned set with one set of terminals in each channel. The channels are structured to limit the flow of arc gases across adjacent sets of terminals.