Abstract:
An area electric power system includes a number of direct current power sources, and a number of inverters operatively associated with the number of direct current power sources. Each of the number of inverters is structured to provide real power and controlled reactive power injection to detect islanding. An output is powered by the number of inverters. A number of electrical switching apparatus are structured to electrically connect the number of inverters to and electrically disconnect the number of inverters from a utility grid. A number of devices are structured to detect islanding with respect to the utility grid responsive to a number of changes of alternating current frequency or voltage of the output.
Abstract:
A circuit for sensing a direct current includes a first resistance and a second resistance. A first portion of the direct current flows through the first resistance and a second portion of the direct current flows through the second resistance. The circuit further includes a current sensor having an opening, first and second conductors inductively coupled with the current sensor, and a switching circuit having a pair of switches structured to alternatingly switch in order that the second portion of the direct current alternatingly flows through the first and second conductors. The second portion of the direct current flowing through the first conductor passes through the opening of the current sensor in a first direction and the second portion of the direct current flowing through the second conductor passes through the opening of the current sensor in a second direction opposite to the first direction.
Abstract:
An energy system includes renewable energy sources each including an inverter. The renewable source inverters are coupled to a distribution line in a manner wherein power combines additively. The system also includes an energy storage source including an energy storage inverter coupled to the distribution line between the point of interconnection and the renewable source inverters. Finally, a control system is structured to: (i) control a voltage at the point of interconnection by controlling a renewable source reactive power output by the renewable source inverters and an energy storage reactive power output by the energy storage inverter, and (ii) provide power ramp rate control for the renewable energy system by controlling at least one of a renewable source real power output by each of the renewable source inverters and a first energy storage real power output by the energy storage inverter.
Abstract:
A system for detecting islanding of a microgrid includes a number of power sources to output real power and controlled reactive power injection; a number of controllers each controlling one of the number of power sources; and an output from the microgrid powered by the number of power sources. A number of electrical switching apparatus electrically connect the output from the microgrid to a grid and electrically disconnect the output from the microgrid from the grid. A microgrid controller detects islanding of the microgrid with respect to the grid, and sends a number of commands to a number of the number of controllers in order to control reactive power injection by a number of the number of power sources. A communication channel is between the microgrid controller and the number of controllers. A number of microgrid loads are powered by the output from the microgrid.