Abstract:
A device for in-situ production of caustic and increasing alkalinity of a detergent and methods for increasing alkalinity of a detergent are disclosed. In particular, in situ electrochemical conversion of bicarbonate, sesquicarbonate or carbonate sources into caustic provides a safe means for increasing alkalinity of a detergent for a variety of cleaning applications. The invention further discloses methods for cleaning using the electrochemically enhanced detergent according to the invention.
Abstract:
A composition of co-polymers, surfactants and solvents is provided for use in methods of reducing paraffin and wax deposition from crude oils in storage and transportation vessels.
Abstract:
A composition of co-polymers, surfactants and solvents is provided for use in methods of reducing paraffin and wax deposition from crude oils in storage and transportation vessels.
Abstract:
The invention is directed to a cleaning composition and method for reducing yellow stains caused by sunscreen components such as avobenzone, oxybenzone, homosalate, octinoxate, octisalate, octocrylene or combinations thereof. The cleaning composition employs a synergistic combination of an amine oxide/solvent and a souring agent.
Abstract:
The invention discloses compositions and methods for generating alkalinity in situ. The compositions and methods relate to the use of a fabric source containing a decomposition agent to catalyze the decomposition of a dilute peroxygen source. The methods provide a highly alkaline cleaning composition produced at a desired time and place of use. Methods of cleaning are also disclosed.
Abstract:
Active oxygen compounds, such as equilibrium peroxycarboxylic acid compositions are incorporated within an adsorbed outer layer of hydrophobic particulate component that remains undissolved from the active oxygen component. The dry powder compositions containing the active oxygen compounds provide a stable, controlled release composition having various applications of use. Beneficially, the dry powders delivering active oxygen compounds are low or no odor compositions and do not require the use of personal protective equipment for persons handling the compositions.
Abstract:
The present disclosure generally relates to a color indicator that signals when the concentration of an antimicrobial solution changes. In some embodiments, the color indicator is specific for changes in the concentration of an antimicrobial quaternary ammonium compound in an antimicrobial solution. The color indicator can be incorporated into a variety of articles including towels, labels, containers, buckets, trays, sinks, spray bottles, liners for containers, buckets, sinks, or spray bottles, indictor wands or strips, and test kits.
Abstract:
A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide. A suitably coated solid does not have dissolved alkali metal hydroxide in the ethanol effluent or is substantially free of alkali metal hydroxide.
Abstract:
A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide. A suitably coated solid does not have dissolved alkali metal hydroxide in the ethanol effluent or is substantially free of alkali metal hydroxide.
Abstract:
The present invention relates to methods, apparatuses, and systems for treating water. The methods, apparatuses and systems reduce scaling associated with solubilized water hardness using a sequence of water treatment agents, including an inlet, one or more treatment reservoirs containing a first treatment agent that is an exhausted ionic resin that is incapable of performing ion exchange and a second treatment agent consisting of a metal oxide and/or hydroxide compound, an outlet, and a treated water delivery line.