Abstract:
Provided are a system and method for providing a microservice-based device control interface. The system for providing a microservice-based device control interface includes a Docker registry server in which resources required for providing a device control interface are located and a gateway which receives and installs resources and provides a device control interface using a Docker-based microservice structure.
Abstract:
Provided is a method of saving power in a passive optical network (PON) system including an optical line terminal (OLT) and a plurality of optical network units (ONUs), the OLT including an optical transceiver to communicate with at least one ONU through an optical line, and a controller to control the optical transceiver to transmit an upstream bandwidth map to the ONU at a predetermined transmission interval, wherein the transmission interval is determined based on a desired upstream data service delay time.
Abstract:
A terminal status monitoring apparatus connected to a terminal at an optical subscriber side in an optical network is provided. A signal transferring unit transfers a downlink optical signal to the terminal and receives, as a reflected optical signal, the downlink optical signal which is reflected at the terminal. A signal receiving unit measures an intensity of the reflected optical signal. A signal processing unit determines a connection status of a terminal device at the terminal by comparing an intensity of the downlink optical signal with the intensity of the reflected optical signal. A signal output unit outputs the connection status.
Abstract:
Disclosed are a method and system for determining and controlling power of an optical transmitter of an optical network unit (ONU) for a time and wavelength division multiplexing passive optical network (TWDM-PON). The system includes an RSSI collector configured to collect received signal strength indication (RSSI) information from upstream optical signals received from the ONUs connected to optical line terminal (OLT) ports, an ONU power level determiner configured to gather the pieces of RSSI information about the ONUs from the RSSI collector, and to determine power of optical transmitters of the ONUs based on the gathered information, and a power mode controller configured to receive power mode setting information of the optical transmitters of the ONUs from the ONU power level determiner, and to generate a physical layer operation and maintenance (PLOAM) message to control power modes of the ONUs based on the received power mode setting information.
Abstract:
Disclosed is an adaptive deep learning inference system that adapts to changing network latency and executes deep learning model inference to ensure end-to-end data processing service latency when providing a deep learning inference service in a mobile edge computing (MEC) environment. An apparatus and method for providing a deep learning inference service performed in an MEC environment including a terminal device, a wireless access network, and an edge computing server are provided. The apparatus and method provide deep learning inference data having deterministic latency, which is fixed service latency, by adjusting service latency required to provide a deep learning inference result according to a change in latency of the wireless access network when at least one terminal device senses data and requests a deep learning inference service.
Abstract:
A fast protection switching method for a Passive Optical Network (PON). When performing protection switching from an operation link (an operation network) to a protection link (a protection network) in a PON, the fast protection switching method enables rapidly updating Equalization Delay (EqD) values, even if the EqD values are different for Optical Network Terminals (ONTs) of varying distances.
Abstract:
Disclosed are a method and system for determining and controlling power of an optical transmitter of an optical network unit (ONU) for a time and wavelength division multiplexing passive optical network (TWDM-PON). The system includes an RSSI collector configured to collect received signal strength indication (RSSI) information from upstream optical signals received from the ONUs connected to optical line terminal (OLT) ports, an ONU power level determiner configured to gather the pieces of RSSI information about the ONUs from the RSSI collector, and to determine power of optical transmitters of the ONUs based on the gathered information, and a power mode controller configured to receive power mode setting information of the optical transmitters of the ONUs from the ONU power level determiner, and to generate a physical layer operation and maintenance (PLOAM) message to control power modes of the ONUs based on the received power mode setting information.