Abstract:
Disclosed is a cloud base station in an orthogonal frequency division multiplexing (OFDM)-based fixed-mobile converged access network and an operation method thereof. The cloud base station may include a physical (PHY) layer unit to perform a quadrature amplitude modulation (QAM) of a parallel signal received from a media access control (MAC) layer per subcarrier, and an optical orthogonal frequency division multiplexing (OFDM) transceiver to transform the QAM modulated subcarriers into a time domain to generate an OFDM sample per subcarrier, add a cyclic prefix (CP) and control information to for operating an enhanced radio unit (eRU) to the OFDM sample per subcarrier to generate a downstream signal, and transmit the downstream signal.
Abstract:
An optical signal detecting apparatus and method. The optical signal detecting apparatus includes an optical demultiplexer configured to demultiplex an input optical signal into a first optical signal having a first band wavelength and a second optical signal having a second band wavelength, a first optical detector configured to detect the first optical signal, and a second optical detector configured to detect the second optical signal, and the optical demultiplexer, the first optical detector, and the second optical detector may be provided in a TO-CAN package.
Abstract:
A tunable optical network unit (ONU) for a multi-wavelength passive optical network (MW PON) system and an operation method thereof are provided. The tunable ONU includes a cyclic tunable filter configured to have cyclic wavelength transmission properties that allow all wavelength channels of both a downstream signal and an upstream signal and to vary a wavelength to pass therethrough; a wavelength splitter configured to split an upstream signal wavelength band and a downstream signal wavelength band; a photodetector element configured to detect a downstream signal that is transmitted through the wavelength splitter, passing through the cyclic tunable filter which is aligned to a specific downstream signal wavelength channel; and a tunable transmitter configured to output to the wavelength transmitter an upstream signal of a wavelength channel that is determined based on an aligned downstream signal wavelength channel of the cyclic tunable filter.
Abstract:
An optical transceiver and a method of setting a wavelength of the optical transceiver. The optical transceiver may include a thermoelectric cooler (TEC) configured to maintain a constant operating temperature of a transmitter optical sub-assembly (TOSA) of the optical transceiver based on an installation environment of the optical transceiver, a plurality of laser diodes arranged on the top of the TEC and configured to output optical signals having different wavelengths, an optical multiplexer configured to multiplex the optical signals having different wavelengths, output through the plurality of laser diodes, and a wavelength controller configured to control the wavelengths of the optical signals output through the plurality of laser diodes such that optical outputs of the optical signals having different wavelengths, detected through the optical multiplexer, are maximized, wherein the wavelength controller may be individually arranged in one region of each of the plurality of laser diodes.
Abstract:
An optical receiver includes: an optical demultiplexer to demultiplex an optical signal in which a plurality of wavelengths is multiplexed and divide the optical signal into optical signals corresponding to the plurality of wavelengths, respectively; a reflector to change a progress direction of the divided optical signals; an optical coupling lens including, in an array form, light transmission lenses through which the divided optical signals are transmitted, respectively; a plurality of photodetectors to mount on a photodiode (PD) substrate provided on the optical coupling lens, receive the divided optical signals that are transmitted through the light transmission lenses of the optical coupling lens, respectively, and convert the received optical signals to electrical signals; and a plurality of trans impedance amplifiers provided at desired intervals to electrically connect to the plurality of photodetectors through wire bonding and amplify the received plurality of electrical signals to be a desired magnitude.
Abstract:
Provided is a device and method for detecting an optical signal. The optical signal detecting device may include an optical de-multiplexer configured to de-multiplex an input optical signal to optical signals of different wavelengths; an optical coupling lens configured to allow the optical signals of different wavelengths to be incident; an optical signal reflector configured to reflect the optical signals of different wavelengths emitted from the optical couple lens; and an optical detector configured to detect the reflected optical signals of different wavelengths.
Abstract:
Provided is a hybrid passive optical network (PON) system. The hybrid PON system of wavelength division multiplexing (WDM)/time division multiplexing (TDM) may include an optical line terminal (OLT) and an optical network unit (ONU). The OLT and the ONU may transmit a signal based on wavelength reuse using a seed light source and a reflective modulator. The light source may include a seed light source having a single wavelength, two seed light sources having different wavelength bands, and a light source having a wavelength tunable characteristic.
Abstract:
A converged passive optical network (CPON) and a data transmission method are disclosed. The CPON is a combination of a time division multiple access-passive optical network (TDMA-PON) and an orthogonal frequency division multiple access-passive optical network (OFDMA-PON) and is able to dynamically controlling a bandwidth for upstream signal transmission through allocation of multiple subcarriers to each single optical network unit (ONU).
Abstract:
A modulation method of an optical modem and a signal transmission apparatus performing the method are disclosed. The modulation method of the optical modem includes an optical interface providing a signal to a light source, a photo detector receiving reflected light by an optical link when output light from the light source based on the provided signal is reflected by the optical link, the photo detector measuring and determining characteristics of the optical link using the reflected light, and the optical modem determining a power level and a modulation method for each subcarrier based on the characteristics of the optical link.
Abstract:
An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.