Abstract:
Provided herein is a multi-channel optical module that transmits or receives an optical signal of multi-channels and a manufacturing method thereof, the multi-channel optical module including a multi-channel optical fiber block configured to transmit an optical signal, a submount including an array optical receiving element unit configured to receive the optical signal; and a mirror unit arranged on a metal optical bench and configured to induce the optical signal transmitted from the multi-channel optical fiber block to the array optical receiving element unit, wherein for the inducement of the optical signal to the array optical receiving element unit, the mirror unit is passively aligned with the array optical receiving element unit, and the multi-channel optical fiber block is actively aligned with the mirror unit.
Abstract:
Provided herein is a multi-channel optical module that transmits or receives an optical signal of multi-channels and a manufacturing method thereof, the multi-channel optical module including a multi-channel optical fiber block configured to transmit an optical signal, a submount including an array optical receiving element unit configured to receive the optical signal; and a mirror unit arranged on a metal optical bench and configured to induce the optical signal transmitted from the multi-channel optical fiber block to the array optical receiving element unit, wherein for the inducement of the optical signal to the array optical receiving element unit, the mirror unit is passively aligned with the array optical receiving element unit, and the multi-channel optical fiber block is actively aligned with the mirror unit.
Abstract:
Disclosed are a method and an apparatus for selecting a wavelength by a wavelength tunable optical receiver. The method of selecting a wavelength of a wavelength tunable optical receiver includes: receiving, by the wavelength tunable optical receiver, an optical signal from a wavelength tunable optical transmitter; filtering, by the wavelength tunable optical receiver, the optical signal through a low frequency band electrical signal filter, and obtaining a low frequency signal; determining, by the wavelength tunable optical receiver, whether the low frequency signal is a valid signal based on a current value of the low frequency signal; and when the low frequency signal is the valid signal, obtaining, by the wavelength tunable optical receiver, an enable condition of a wavelength tunable optical filter through which the low frequency signal is selected, in which the low frequency signal includes a control/monitoring signal.
Abstract:
Disclosed is an optical source device. The optical source device includes: a mode converter configured to be optically coupled with an optical fiber; a semiconductor optical amplifier coupled with the mode converter, and configured to amplify an optical signal input through the optical fiber; and an electro absorption modulator coupled to the optical amplifier, and configured to modulate the amplified optical signal and output the modulated optical signal, in which each of the semiconductor optical amplifier and the optical absorption modulator includes a heater.