Abstract:
The present invention relates to a method and a catalyst composite useful for reducing contaminants in exhaust gas streams containing sulfur oxide contaminants. The method for removing NOx and SOx contaminants from a gaseous stream comprises providing a catalyst composite having a downstream section and an upstream section. The downstream section comprises a first support, a first platinum component, and a NOx sorbent component. The upstream section comprises a second support, a second platinum component, and a SOx sorbent component selected from the group consisting of oxides of Mg, Sr, and Ba. In a sorbing period, a lean gaseous stream comprising NOx and SOx is passed through the upstream section to sorb at least some of the SOx contaminants. The downstream section sorbs and abates the NOx in the gaseous stream. In a SOx desorbing period, the temperature of the gaseous stream is raised to within a desorbing temperature range to thereby desorb and abate at least some of the SOx contaminants in the upstream section. The desorbing temperature range is sufficiently high such that the SOx contaminants are substantially not sorbed in the downstream section. In a NOx desorbing period, the exhaust gas is converted from a lean stream to a rich stream to desorb and reduce at least some of the NOx contaminants from the downstream section.
Abstract:
A support for a catalyst for controlling vehicular exhaust emissions comprising a high surface area refractory metal oxide, e.g., gamma-alumina, having a monomolecular layer of a second oxide selected from the group consisting of titanium dioxide, cerium dioxide and zirconium dioxide. Typically, the monomolecular layer will have a thickness of less than about 10 angstroms. The support may be converted into a vehicular exhaust emission control catalyst by depositing the support on a substrate such as cordierite depositing a precious metal component such as platinum on at least part of the monomolecular layer. Preferably, the catalyst will also contain at least one NOx storage component deposited on at least part of the monomolecular layer. Catalysts prepared using the catalyst supports of the invention exhibit outstanding thermal stability and resistance to sulfur poisoning.
Abstract:
A catalytic trap disposed in an exhaust passage of an internal combustion engine which is operated with periodic alternations between lean and stoichiometric or rich conditions, for abatement of NOx in an exhaust gas stream which is generated by the engine. The trap comprises a catalytic trap material and a refractory carrier member on which the catalytic trap material is disposed. The catalytic trap material comprises: (i) a refractory metal oxide support; (ii) a catalytic component effective for promoting the reduction of NOx under stoichiometric or rich conditions; and (iii) a NOx sorbent effective for adsorbing the NOx under lean conditions and desorbing and reducing the NOx to nitrogen under stoichiometric or rich conditions. The NOx sorbent comprises a metal oxide selected from the group consisting of one or alkali metal oxides, alkaline earth metal oxides and mixtures of one or more alkali metal oxides and alkaline earth metal oxides. The manganese component is selected from the group consisting of: (1) a manganese oxide, (2) a mixed oxide of manganese and a transition metal and/or a rare earth metal, (3) a compound of an alkali metal and a manganese oxide, (4) a compound of an alkaline earth metal and a manganese oxide and (5) mixtures of the foregoing oxides and compounds.