Abstract:
A diesel powered vehicle is provided with an SCR system which uses an external reducing reagent to convert NOx emissions in a manner which accounts for the effects of NOx transient emissions on the reducing catalyst. Actual NOx emissions produced by the engine are filtered using a variable NOx time constant in turn correlated to the reductant/NOx storage capacity of the reducing catalyst at its current temperature to account for changes in the SCR system attributed to NOx transient emissions. Catalyst temperature is filtered using a variable catalyst time, constant corresponding to current space velocity of the exhaust gas to account for changes in the catalyst temperature attributed to NOx transient emissions. The reductant is metered on the basis of the filtered, corrected NOx concentration applied at a NSR ratio based, in turn, on the filtered, corrected reducing catalyst temperature.
Abstract:
A vehicular atmosphere cleansing system utilizes a regenerative wheel having flow channels extending through the wheel coated with an adsorbant. An atmosphere stream passes through a first position dependent portion of the wheel where VOC's including HC's are adsorbed while a heated atmosphere stream passes through a second position dependent regenerative portion of the wheel whereat VOC's are desorbed. The adsorbant is activated carbon having particles of micropore size adhered to the substrate by a silicone binder producing high adsorption efficiencies while withstanding relatively high regenerative heat temperatures resulting from exhaust gas sensible heat. A hydrocarbon senses HC in the desorbed heated atmosphere stream to rotatively and sequentially index pie shaped, segmented portions of the wheel into the wheel's regenerative region while also functioning as the main component of an OBD device for the system.
Abstract:
Provided is an exhaust article (catalyst) coated on a single substrate, such as a monolithic honeycomb having a plurality of channels along the axial length of the catalyst. Different washcoat compositions are deposited along the length the channel walls of the substrate beginning from either the inlet or outlet axial end of the substrate to form inlet and outlet catalyst layers, respectively. In the coating process, the channel walls are coated with catalyst washcoat compositions to lengths that are less than the substrates' axial length. The architecture of the resulting catalyst layers defines a plurality of zones along the length of the substrate. The properties of each zone of the catalyst can be optimized to address specific catalyst functions by manipulation of both the coating lengths and the catalyst washcoat compositions.
Abstract:
Provided is a method and apparatus for producing hydrogen from an input gas stream containing carbon monoxide and steam that includes contacting the input gas stream with a catalyst. The catalyst contains an inorganic oxide support; a platinum group metal dispersed on the inorganic oxide support; and a methane suppressing dispersed on the inorganic oxide support. The methane suppressing component is selected from the group consisting of oxides of tin, oxides of gallium and combinations thereof. Also provided are preferred catalyst preparations.
Abstract:
The present invention relates to a method and a catalyst composite useful for reducing contaminants in exhaust gas streams containing sulfur oxide contaminants. The method for removing NOx and SOx contaminants from a gaseous stream comprises providing a catalyst composite having a downstream section and an upstream section. The downstream section comprises a first support, a first platinum component, and a NOx sorbent component. The upstream section comprises a second support, a second platinum component, and a SOx sorbent component selected from the group consisting of oxides of Mg, Sr, and Ba. In a sorbing period, a lean gaseous stream comprising NOx and SOx is passed through the upstream section to sorb at least some of the SOx contaminants. The downstream section sorbs and abates the NOx in the gaseous stream. In a SOx desorbing period, the temperature of the gaseous stream is raised to within a desorbing temperature range to thereby desorb and abate at least some of the SOx contaminants in the upstream section. The desorbing temperature range is sufficiently high such that the SOx contaminants are substantially not sorbed in the downstream section. In a NOx desorbing period, the exhaust gas is converted from a lean stream to a rich stream to desorb and reduce at least some of the NOx contaminants from the downstream section.
Abstract:
Hydrogen sulfide formation is suppressed by a three-way conversion catalyst having an underlayer and a topcoat overlying the under layer. The under layer is prepared by dispersing a Group IIa metal oxide such as an oxide of magnesium, calcium, barium or strontium on a carrier such as a refractory metal oxide monolith. A topcoat overlying the undercoat is comprised of a three-way conversion catalyst material such as a platinum-group metal catalytic component, e.g., platinum, palladium, rhodium or mixtures thereof.
Abstract:
A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
Abstract:
A color effect material is composed of a plurality of encapsulated substrate platelets in which each platelet is encapsulated with a first layer which acts as a reflector to light directed thereon, a visibly transparent second organic layer encapsulating the first layer in which the second layer provides an optically variable reflection of light impinging thereon and a third layer encapsulating the second layer and being selectively transparent to light directed thereon.
Abstract:
A color effect material is composed of a plurality of encapsulated substrate platelets in which each platelet is encapsulated with a first layer which acts as a reflector to light directed thereon, a visibly transparent second organic layer encapsulating the first layer in which the second layer provides an optically variable reflection of light impinging thereon and a third layer encapsulating the second layer and being selectively transparent to light directed thereon.
Abstract:
A color effect material is composed of a plurality of encapsulated substrate platelets in which each platelet is encapsulated with a first layer which acts as a reflector to light directed thereon, a visibly transparent second organic layer encapsulating the first layer in which the second layer provides an optically variable reflection of light impinging thereon and a third layer encapsulating the second layer and being selectively transparent to light directed thereon.