Abstract:
The present application relates to a method for producing ceramic multi-layer components (100), comprising the following steps: providing green layers (5) for the ceramic multi-layer components (100), stacking the green layers (5) into a stack and subsequently pressing the stack into a block (1), singulating the block (1) into partial blocks (3) each having a longitudinal direction (X), thermally treating the partial blocks (3) and subsequently machining surfaces of the partial blocks (3), wherein recesses (11) are produced on the surfaces of the partial blocks (3) during the machining, and singulating the partial blocks (3). The application further relates to a multi-layer component.
Abstract:
An electrical component includes at least one external contact having a first metallization and a second metallization. The metallizations are fired and the second metallization only partly covers the first metallization. Furthermore, an electrical component includes at least one frame-shaped metallization. Furthermore, an electrical component includes a first and second metallization that have a different wettability with solder material.
Abstract:
An electrical component includes at least one external contact having a first metallization and a second metallization. The metallizations are fired and the second metallization only partly covers the first metallization. Furthermore, an electrical component includes at least one frame-shaped metallization. Furthermore, an electrical component includes a first and second metallization that have a different wettability with solder material.
Abstract:
Methods for producing ceramic multi-layer components and multi-layer components made by such methods. A method includes the following steps: providing green layers for the ceramic multi-layer components, stacking the green layers into a stack and subsequently pressing the stack into a block, singulating the block into partial blocks each having a longitudinal direction, thermally treating the partial blocks and subsequently machining surfaces of the partial blocks. Recesses are produced on the surfaces of the partial blocks during the machining, and the partial blocks are singulated.
Abstract:
A method can be used for producing ceramic multilayer components. The method includes providing green layers for the ceramic multilayer components, stacking the green layers into a stack, and subsequently compressing the stack to form a block. Furthermore, the method includes isolating the block into partial blocks that each have a longitudinal direction, thermally treating the partial blocks, subsequently mechanically machining surfaces of the partial blocks, and providing the partial blocks with outer electrodes and isolating the partial blocks in each case transversely to the longitudinal direction into individual ceramic multilayer components.
Abstract:
A multi-layer component (1) is specified, comprising a main body (2) with an external contact (3) arranged thereon, a further contact (5) for electrically contacting the multi-layer component (1), and a connecting element (4) for connecting the external contact (3) and the further contact (5), wherein the connecting element (4) is embodied in such a way that a decoupling of mechanical stresses that occur in the further contact (5) from the external contact (3) is brought about.
Abstract:
A method can be used for producing ceramic multilayer components. The method includes providing green layers for the ceramic multilayer components, stacking the green layers into a stack, and subsequently compressing the stack to form a block. Furthermore, the method includes isolating the block into partial blocks that each have a longitudinal direction, thermally treating the partial blocks, subsequently mechanically machining surfaces of the partial blocks, and providing the partial blocks with outer electrodes and isolating the partial blocks in each case transversely to the longitudinal direction into individual ceramic multilayer components.