Abstract:
A sensor and a method for measuring a pressure are disclosed. In an embodiment the sensor includes a main body including a piezoelectric material and at least two internal electrodes arranged in the piezoelectric material, wherein the at least two internal electrodes are arranged in such a way that a voltage arises between the at least two internal electrodes when a pressure acts on a side surface of the main body that is provided for an application of pressure.
Abstract:
A pressure sensor and a method for measuring a pressure are disclosed. In an embodiment the pressure sensor includes a main body comprising a piezoelectric material and at least two internal electrodes arranged in the piezoelectric material, wherein the at least two internal electrodes are arranged such that a voltage arises between the at least two internal electrodes when a pressure acts on a side surface of the main body that is provided for an application of pressure.
Abstract:
A piezoelectric actuator of a multilayer design includes outer electrodes that are fastened by means of a bonding layer applied by thermal spraying. For example, the outer electrodes are formed as a woven wire fabric. Furthermore, a method for fastening an outer electrode in a piezoelectric actuator is specified.
Abstract:
The invention relates to a method for filling at least one cavity (5a, 5b) of a multi-layer component (1) with filling material (9). In a first step, the method comprises providing a main body (2) of the multi-layer component (1), the main body (2) having at least one cavity (5a, 5b). In a subsequent step, the method comprises placing the main body (2) in a chamber (11) and then generating a first pressure, the first pressure being a negative pressure. Then, a filling material (9) is arranged on the main body (2). Furthermore, the invention relates to a multi-layer component (1). The multi-layer component (1) has a main body (2) with at least one cavity (5a, 5b), wherein the cavity (5a, 5b) is filled with a filling material (9) which has a viscosity of between 200 mPas and 2000 mPas.
Abstract:
A multilayer component includes a main body and an external contact. The external contact has a connection element and a contact layer. The contact layer electrically conductively connects the main body to the connection element. A connection between the main body and the connection element is produced by sintering of the contact layer.
Abstract:
A piezoelectric actuator of a multilayer design includes outer electrodes that are fastened by means of a bonding layer applied by thermal spraying. For example, the outer electrodes are formed as a woven wire fabric. Furthermore, a method for fastening an outer electrode in a piezoelectric actuator is specified.
Abstract:
A method for producing an electric contact-connection of a multilayer component is specified. A main body has internal electrode layers, a insulating material, an electrically conductive material and a photosensitive material are provided. The insulating material and the electrically conductive material are arranged in a structured manner on an outer side of the multilayer component for the alternate contact-connection of the internal electrode layers. The structured arrangement is produced by the photosensitive material. A multilayer component comprising such a contact-connection is furthermore specified.
Abstract:
A multilayer component is disclosed. In an embodiment, a multilayer component includes a main body having a plurality of alternately arranged ceramic layers and inner electrodes and at least two outer electrodes for electrically contacting the inner electrodes, wherein the at least two outer electrodes have a different polarity, and wherein the outer electrodes have a different geometric shape and/or a different size and/or a different arrangement at an outer surface of the main body for identifying the different polarity.
Abstract:
A method for producing an electric contact-connection of a multilayer component is disclosed. In an embodiment, the method includes providing a main body of the multilayer component having internal electrode layers, applying an electrically conductive material and applying a photosensitive material on the electrically conductive material. The method further includes structuring the electrically conductive material via the photosensitive material such that the internal electrode layers alternatingly are covered and uncovered by the electrically conductive material and applying an insulating material after structuring the electrically conductive material such that the internal electrode layers are alternatingly covered by the electrically conductive material and by the insulating material.
Abstract:
The present application relates to a method for producing ceramic multi-layer components (100), comprising the following steps: providing green layers (5) for the ceramic multi-layer components (100), stacking the green layers (5) into a stack and subsequently pressing the stack into a block (1), singulating the block (1) into partial blocks (3) each having a longitudinal direction (X), thermally treating the partial blocks (3) and subsequently machining surfaces of the partial blocks (3), wherein recesses (11) are produced on the surfaces of the partial blocks (3) during the machining, and singulating the partial blocks (3). The application further relates to a multi-layer component.