Abstract:
A method for producing a piezoelectric component is disclosed. In an embodiment, the method includes producing a ceramic precursor material of the general formula Pb1-x-y-(2a-b)/2V(2a-b)/2″BaxSry[(TizZr1-z)1-a-bWaREb]O3, where RE is a rare earth metal and V″ is a Pb vacancy, mixing the ceramic precursor material with a sintering aid, forming a stack which includes alternating layers including the ceramic precursor material and a layer including Cu and debindering and sintering the stack thereby forming the piezoelectric component having Cu electrodes and at least one piezoelectric ceramic layer including Pb1-x-y-[(2a-b)/2]-p/2V[(2a-b)/2-p/2]″CupBaxSry[(TizZr1-z)1-a-bWaREb]O3, where 0≦x≦0.035, 0≦y≦0.025, 0.42≦z≦0.5, 0.0045≦a≦0.009, 0.009≦b≦0.011, and 2a>b, p≦2a−b.
Abstract:
A piezoelectric multilayer component having a stack of sintered piezoelectric layers and inner electrodes arranged between the piezoelectric layers. A region which has poling cracks is present on the surface of at least one electrode, and the poling cracks are separated from a surface of at least one of the inner electrodes by the region having the poling cracks.
Abstract:
A method for producing an electronic component includes providing a piezoelectric main body, which is provided with electrodes. A first electric polarization field having a first polarity direction is applied to the piezoelectric main body between the two electrodes and then a second electric polarization field is applied in a second polarity direction, opposite to the first polarity direction, to the piezoelectric main body between the electrodes. The absolute value of the second electric polarization field differs from that of the first electric polarization field.
Abstract:
The invention relates to a ceramic material, comprising lead zirconate titanate, which additionally contains K and optionally Cu. The ceramic material can be used in an electroceramic component, for example a piezoelectric actuator. The invention also relates to methods for producing the ceramic material and the electronic component.
Abstract:
The invention relates to a ceramic material, comprising lead zirconate titanate, which additionally contains K and optionally Cu. The ceramic material can be used in an electroceramic component, for example a piezoelectric actuator. The invention also relates to methods for producing the ceramic material and the electronic component.
Abstract:
A method can be used for producing ceramic multilayer components. The method includes providing green layers for the ceramic multilayer components, stacking the green layers into a stack, and subsequently compressing the stack to form a block. Furthermore, the method includes isolating the block into partial blocks that each have a longitudinal direction, thermally treating the partial blocks, subsequently mechanically machining surfaces of the partial blocks, and providing the partial blocks with outer electrodes and isolating the partial blocks in each case transversely to the longitudinal direction into individual ceramic multilayer components.
Abstract:
A method for producing an electronic component includes providing a piezoelectric main body, which is provided with electrodes. A first electric polarization field having a first polarity direction is applied to the piezoelectric main body between the two electrodes and then a second electric polarization field is applied in a second polarity direction, opposite to the first polarity direction, to the piezoelectric main body between the electrodes. The absolute value of the second electric polarization field differs from that of the first electric polarization field.
Abstract:
A method for producing a piezoelectric multilayer component is disclosed. Piezoelectric green films and electrode material are provided, arranged alternately on top of one another and sintered. The electrode material is provided with a PbO-containing coating and/or PbO is mixed into the electrode material.
Abstract:
A method can be used for producing ceramic multilayer components. The method includes providing green layers for the ceramic multilayer components, stacking the green layers into a stack, and subsequently compressing the stack to form a block. Furthermore, the method includes isolating the block into partial blocks that each have a longitudinal direction, thermally treating the partial blocks, subsequently mechanically machining surfaces of the partial blocks, and providing the partial blocks with outer electrodes and isolating the partial blocks in each case transversely to the longitudinal direction into individual ceramic multilayer components.