Abstract:
A light emitting device includes: a plurality of light emitting stacked layers, including a first surface and a second surface, wherein the second surface is electrically opposite to the first surface; a mesa structure; and a current blocking (CB) layer disposed on the first surface; a transparent conductive layer disposed on or above the first surface; and a first pad electrode, disposed on the transparent conductive layer and on the first surface; wherein a sidewall of the CB layer comprises a first surface section and a second surface section having different slopes.
Abstract:
Disclosed is a method for testing a light-emitting device comprising the steps of: providing an integrating sphere comprising an inlet port and a first exit port; disposing the light-emitting device close to the inlet port of the integrating sphere; providing a current source to drive the light-emitting device to form an image of the light-emitting device in driven state; providing an image receiving device and to receive the image of the light-emitting device, wherein the image receiving device is connected to the first exit port of the integrating sphere; and determining a luminous intensity of the light-emitting device according to the image. An apparatus for testing a light-emitting device is also disclosed. The apparatus for testing a light-emitting device comprises: an integrating sphere comprising an inlet port and a first exit port, wherein the light-emitting device is disposed close to the inlet port of the integrating sphere; an image receiving device connected to the first exit port of the integrating sphere for receiving an image of the light-emitting device; and a processing unit coupled to image receiving device for determining a luminous intensity of the light-emitting device.
Abstract:
A method for fabricating a light emitting device, comprising: forming a plurality of light emitting stacked layers above a substrate; forming and patterning a current blocking (CB) layer on the light emitting stacked layers; forming a transparent conductive layer covering the light emitting stacked layers and the current blocking layer; etching the transparent conductive layer and exposing a reserved region for a first pad electrode and a mesa structure, respectively; and etching an exposed portion of the light emitting stacked layers and a portion of the current blocking layer to form a remaining current blocking layer, the mesa structure and a first opening.
Abstract:
A light emitting device, includes a substrate; a plurality of light emitting stacked layers, comprising a first surface and a second surface; a mesa structure; a current blocking (CB) layer; a transparent conductive layer; a first pad electrode and a second pad electrode; and a passivation layer, wherein the second surface is electrically opposite to the first surface, the transparent conductive layer is disposed on or above the first surface, the first pad electrode is disposed on the transparent conductive layer and on the first surface, and the second pad electrode is disposed on the second surface and on the mesa structure, the CB layer is disposed on the first surface, surrounded by the transparent conductive layer, and at a lower region of the first pad electrode, a portion of the first pad electrode is filling a first opening of the transparent conductive layer and the CB layer.
Abstract:
A light emitting device includes: a plurality of light emitting stacked layers, including a first surface and a second surface, wherein the second surface is electrically opposite to the first surface; a mesa structure; a current blocking layer disposed on the first surface, including a sidewall; and a transparent conductive layer disposed on the first surface; and a first pad electrode, disposed on the transparent conductive layer and on the first surface; wherein a retract distance of the transparent conductive layer with respect to an edge of the mesa structure is less than 3 μm; and wherein a retract distance of the transparent conductive layer with respect to an edge of the sidewall of the current blocking layer is less than 3 μm.
Abstract:
An apparatus for measuring the optoelectronic characteristics of a light-emitting diode includes: a container including a light input port and a light output port; a measurement module connected to the light output port of the container; a sample holder under the container for holding a light-emitting diode under test, wherein a surface of the measurement module reflects more than 50% of the luminous flux generated by the light-emitting diode under test; and a light gathering unit between the container and the sample holder, wherein an interior wall of the light gathering unit reflects more than 50% of the luminous flux generated by the light-emitting diode under test.
Abstract:
Disclosed is a method for testing a light-emitting device comprising the steps of: providing an integrating sphere comprising an inlet port and a first exit port; disposing the light-emitting device close to the inlet port of the integrating sphere; providing a current source to drive the light-emitting device to form an image of the light-emitting device in driven state; providing an image receiving device and to receive the image of the light-emitting device, wherein the image receiving device is connected to the first exit port of the integrating sphere; and determining a luminous intensity of the light-emitting device according to the image. An apparatus for testing a light-emitting device is also disclosed. The apparatus for testing a light-emitting device comprises: an integrating sphere comprising an inlet port and a first exit port, wherein the light-emitting device is disposed close to the inlet port of the integrating sphere; an image receiving device connected to the first exit port of the integrating sphere for receiving an image of the light-emitting device; and a processing unit coupled to image receiving device for determining a luminous intensity of the light-emitting device.