Abstract:
There is herein provided a method for measuring the GOSNR that can be implemented using commercial-grade transceivers and which accounts for linear optical impairments (e.g. PMD, PDL and CD) and transceiver intrinsic impairments. The method may be implemented using an Optical Spectrum Analyzer (OSA) and either the system transceivers or other commercial-grade transceivers. The proposed measurement method is based on mixed optical and electronic technologies, using an OSA and a transceiver pair. By measuring a signal quality metric Qm and the OSNR under varied power and ASE noise conditions, a constant value RBW that relates the GOSNR to the signal quality metric Qm is derived. The GOSNR is then obtained from these results.
Abstract:
There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract:
There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract:
There is provided a method for determining a noise parameter characterizing an optical Signal-Under-Test (SUT) having a signal contribution, an Amplified Spontaneous Emission (ASE) noise contribution and a non-ASE optical noise contribution, such as a carrier-leakage contribution or a depolarized-signal contribution, within an optical-signal bandwidth. The method comprises acquiring optical spectrum trace(s) of the SUT, discriminating at least the non-ASE optical noise contribution from the ASE-noise contribution using the optical spectrum trace(s) and/or a trace obtained from the optical spectrum trace(s); and determining the noise parameter using discriminated non-ASE optical noise contribution and/or the discriminated ASE-noise contribution.
Abstract:
There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract:
There is provided an optical loss testing system for multi-fiber array cables an optical loss test method and a reference method therefor which overcomes at least part of the multi-powermeter uncertainty. A prior calibration step serves to characterize the relative difference in optical power response of the multiple power meters. This relative difference can then be used to correct the optical loss measurement so as to eliminate its effect.
Abstract:
Method and systems for characterizing an optical signal propagating along a communication link are disclosed. The signal includes a data-carrying signal contribution, modulated at a symbol frequency, and a noise contribution. The method includes measuring an optical power spectrum of the signal, which includes a data-carrying signal spectrum component and a noise spectrum component. The method also includes determining a measured spectral correlation function within pairs of spectral components of the signal as a function of center frequency of the pairs, the spectral components in each pair being spectrally separated from each other by the symbol frequency. The method further includes obtaining a solution for the data-carrying signal spectrum component based on the measured optical power spectrum, such that a calculated spectral correlation function based on the solution matches the measured spectral correlation function. In some embodiments, the spectral correlation function is measured as a low-frequency beatnote amplitude function.
Abstract:
There is provided a method and an apparatus for determining quality parameters on a polarization-multiplexed optical signal based on an analysis of the power spectral density of the Signal-Under-Test (SUT). The method is predicated upon knowledge of the spectral shape of the signal in the absence of significant noise or spectral deformation. This knowledge is provided by a reference optical spectrum trace. Based on this knowledge and under the assumption that ASE noise level is approximately constant in wavelength over a given spectral range, the spectral deformation of the signal contribution of the SUT may be estimated using a comparison of the spectral variations of the optical spectrum trace of the SUT with that of the reference optical spectrum trace.
Abstract:
There are provided herein test instruments, devices and methods for measuring the optical power loss of optical-fiber devices under test, and particularly those terminated with multifiber connectors, which allows for a one-cord or one-cord equivalent reference method whichever the pinning of the actual optical-fiber device under test. There is proposed to add an optical-fiber expansion device to convert the pinning of the input interface of the power meter instrument from pinned to unpinned or vice-versa, while not adding extra measurement uncertainty. This is accomplished using a patch cord which core diameter is between that of the device under test and that of the input interface of the power meter instrument.
Abstract:
There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.