Abstract:
A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. The device includes an upstream wavelength analyzer receiving upstream light extracted from the optical transmission path and configured to determine an upstream spectral characteristic of the extracted upstream light. The device also includes a downstream filter assembly receiving downstream light extracted from the optical transmission path and configured to spectrally split the extracted downstream light into a plurality of downstream signals, one of which corresponding to a downstream signal of interest. The device further includes a processing unit configured to identify, based on the upstream spectral characteristic, the downstream signal of interest among the downstream filtered signals, and a downstream optical power meter assembly coupled to the downstream filter assembly and configured to measure an optical power parameter of the downstream signal of interest.
Abstract:
There are provided an optical-fiber connector endface inspection microscope system and a method for inspecting an endface of an optical-fiber connector. The inspection microscope device is releasably connectable to an adapter tip configured to interface with the optical-fiber connector to inspect the endface thereof. The adapter tip is one among a plurality of adapter tip types adapted to inspect respective types of optical-fiber connectors. The optical-fiber connector endface inspection microscope system comprises a tip detection system adapted to recognize the type of the adapter tip among the plurality of adapter tip types; and is configured to analyze inspection images to produce an inspection result for the endface, at least partly based on a fiber type corresponding to the recognized adapter tip and/or other information read by the tip detection system.
Abstract:
There is provided a bi-directional optical reflectometric method for characterizing an optical fiber link. The method comprises: performing at least one forward-direction light acquisition from one end of the optical fiber link and performing at least one backward-direction light acquisition from the opposite end, wherein each light acquisition is performed by propagating at least one test light signal corresponding to given spatial resolution and detecting corresponding return light so as to obtain a reflectometric trace representing backscattered and reflected light as a function of a distance on the optical fiber link, and wherein said forward-direction light acquisition and said backward-direction light acquisition are performed with mutually different spatial resolutions; and deriving a value of at least one parameter characterizing an event at a location along said optical fiber link at least using the forward-direction light acquisition and the backward-direction light acquisition performed with mutually different spatial resolutions.
Abstract:
There is provided a bi-directional optical reflectometric method for characterizing an optical fiber link. The method comprises: performing a plurality of forward-direction light acquisitions from one end of the optical fiber link and performing a plurality of backward-direction light acquisitions from the opposite end, wherein each light acquisition is performed by propagating at least one test light signal corresponding to given spatial resolution and detecting corresponding return light so as to obtain a reflectometric trace representing backscattered and reflected light as a function of a distance on the optical fiber link, and wherein said plurality of forward-direction light acquisitions and said plurality of backward-direction light acquisitions are each performed with mutually different spatial resolutions; and deriving a value of at least one parameter characterizing an event along said optical fiber link at least using a forward-direction light acquisition and a backward-direction light acquisition performed with mutually different spatial resolutions.
Abstract:
There are provided techniques for characterizing and testing a cable routing connection configuration connection arrangement comprising a plurality of optical fiber links connected between at least a first connection device at a first end and a second multi-fiber connection device at a second end. Test light is injected into one or more of the optical fiber links via corresponding optical fiber ports of the first connection device. At least one image of the second multi-fiber connection device is captured. Test light exiting the optical fiber link(s) through optical fiber port(s) of the second multi-fiber connection device is imaged as light spot(s) in the captured image. Positions on the second multi-fiber connection device that corresponds to the optical fiber port(s) are determined based on a pattern of the light spot(s) in the captured image. In some implementations, the provided techniques allow detection or verification of cable routing connection configurations at multi-fiber distribution panels.
Abstract:
There is provided an OTDR receive device, an OTDR system comprising an OTDR receive device and an OTDR method wherein the OTDR unit and the OTDR receive device are to be connected at opposite ends of an optical fiber link under test. The OTDR receive device comprises means for the OTDR system to detect an established connectivity between the OTDR unit and the OTDR receive device via the optical fiber link under test and a status indicator to notify a user of the receive device of the connectivity status and optionally an OTDR measurement status. Connectivity detection allows to check for continuity between the OTDR unit and the OTDR receive device before launching an OTDR measurement. A user of the OTDR unit does not need to communicate with the user of the OTDR receive device to know when to start the acquisition.
Abstract:
A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. An upstream wavelength analyzer receives upstream light extracted from the optical transmission path and is configured to determine an upstream spectral characteristic of the extracted upstream light. A downstream optical power meter assembly receives downstream light extracted from the optical transmission path and is configured to measure an optical power parameter of a downstream signal. A processing unit is configured to determine, based on the upstream spectral characteristic, at least one pass/fail threshold associated with the measured optical power parameter of the downstream signal.
Abstract:
There is provided a method and a system for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs an OTDR acquisition device at the near end of the MPO cable, a loopback device at the far end and an array of signatures detectable by the OTDR, either at the far or the near end. The loopback device allows performing bidirectional OTDR measurements with a single OTDR acquisition device (without moving it from one end to the other) and the signature array provides fiber arrangement/cable type identification or verification.
Abstract:
There is provided an optical-fiber connector endface inspection microscope system for inspecting an endface of an optical-fiber connector. It comprises one or more image detector for capturing at least one image of the endface to be inspected; an objective lens system comprising a focusing lens for adjusting a focus of the objective lens system on the image detector and a fixed relay lens; a main housing structure enclosing the image detector and the focusing lens; and at least one interchangeable optical head releasably connectable to the main housing structure and enclosing the fixed relay lens, wherein the optical head is releasably connectable to an adapter tip for interfacing with the optical-fiber connector to be inspected.
Abstract:
There is provided a method and a system for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs an OTDR acquisition device at the near end of the MPO cable, a loopback device at the far end and an array of signatures detectable by the OTDR, either at the far or the near end. The loopback device allows performing bidirectional OTDR measurements with a single OTDR acquisition device (without moving it from one end to the other) and the signature array provides fiber arrangement/cable type identification or verification.