Abstract:
Methods and systems for an electric drive axle of a vehicle are provided. An electric drive axle system includes, in one example a gear train configured to rotationally attach to an electric motor-generator, the gear train includes an output shaft having a clutch arranged thereon and configured to selectively rotationally couple a gear to the output shaft. The gear train further includes a lubrication channel extending between an output shaft and an axle shaft and including an outlet extending through the output shaft and opening into the clutch.
Abstract:
A cover for a differential housing is disclosed herein. The cover can include a body, a flange, a fluid reservoir, a first fluid conduit, and second fluid conduit. The body can have an inwardly-facing surface and outwardly-facing surface opposite the inwardly-facing surface. The flange can extend about at least a portion of a perimeter of the body. The fluid reservoir can be defined within the body and have a reservoir outlet and a return port. The first fluid conduit can be defined within the body. The first fluid conduit can be spaced from the fluid reservoir and extend between a first inlet and a first outlet. The second fluid conduit can be defined within the body and extend between the first fluid conduit and the return port of the fluid reservoir.
Abstract:
An electronic traction optimization system includes a control unit adapted to produce a corner speed estimate signal for each wheel of a machine, produce an ideal target speed signal for each wheel having a value at least partially responsive to the corner speed estimate signals, produces a practical target speed signal for each wheel, generates an actual target speed signal having a value responsive to a comparison of the ideal target speed signal and the practical target speed signal for each wheel. The control unit compares each actual target speed signal to an associated wheel speed signal to obtain a wheel speed error signal for each wheel and converts each wheel speed error signal to a clutch control signal, wherein each differential clutch actuator is responsive to an associated clutch control signal.
Abstract:
A rear wheel driving apparatus (1) includes: a first right-left communication passage (FP) through which a left reservoir (RL) and a right reservoir (RR) are communicated with each other; and a second right-left communication passage (SP) which is provided in parallel with the first right-left communication passage (FP) and through which the left reservoir (RL) and the right reservoir (RR) are communicated with each other. Thus, flowability of a liquid fluid stored in a case (11) is enhanced, and smoothing of a fluid level is enabled.
Abstract:
A driving force control apparatus includes: a turning radius estimating unit that estimates a turning radius of a four-wheel-drive vehicle; a target slip angle computing unit that computes a target slip angle at the time of turning of the four-wheel-drive vehicle, on the basis of the estimated turning radius; a target rotational speed computing unit that computes target rotational speeds of right and left rear wheels of the four-wheel-drive vehicle, on the basis of the estimated turning radius, the computed target slip angle, and a vehicle speed; and a driving force control unit that controls driving forces that are transmitted to the right and left rear wheels such that actual rotational speeds of the right and left rear wheels approach the computed target rotational speeds.
Abstract:
In a driveline in a front wheel drive vehicle the distribution of drive torque to the drive wheels (1) via a differential (6) is controlled by means of a differential brake with a hydraulically controlled limited slip clutch (7). A low preparatory hydraulic pressure is applied to the clutch at the occurrence of any one of certain predetermined driving situations for decreasing the response time for the clutch.
Abstract:
An electronic traction optimization system includes a control unit adapted to produce a corner speed estimate signal for each wheel of a machine, produce an ideal target speed signal for each wheel having a value at least partially responsive to the corner speed estimate signals, produces a practical target speed signal for each wheel, generates an actual target speed signal having a value responsive to a comparison of the ideal target speed signal and the practical target speed signal for each wheel. The control unit compares each actual target speed signal to an associated wheel speed signal to obtain a wheel speed error signal for each wheel and converts each wheel speed error signal to a clutch control signal, wherein each differential clutch actuator is responsive to an associated clutch control signal.
Abstract:
A front-wheel-drive transaxle unit for a motor vehicle comprises a differential assembly having a differential mechanism disposed in a differential case and two opposite output shafts outwardly extending from the differential case and a torque-coupling device for selectively restricting differential rotation of the differential mechanism. The torque-coupling device includes a friction clutch assembly for selectively frictionally engaging and disengaging the differential case and one of the output shafts, and a selectively controllable clutch actuator assembly for selectively frictionally loading the friction clutch assembly. The clutch assembly includes at least one first member non-rotatably coupled to the differential case and at least one second member non-rotatably coupled to one of said output shafts. The torque-coupling device provides the differential assembly of the front-wheel-drive transaxle unit with both limited-slip and open differential capabilities.
Abstract:
A motor vehicle driveline that can transmits power in a 4×4 mode includes two front wheels, a rear drive shaft, a differential mechanism for transmitting power to two rear axle shafts connected driveably through the differential to the rear driveshaft, and a clutch for engaging and disengaging a drive connection in the differential mechanism. A method for controlling operation of the clutch includes the steps of operating the driveline in 4×4 mode, determining a current accelerator pedal position, determining whether a current accelerator pedal position is less than a reference position for a predetermined period, determining a current speed of each front wheel of the vehicle, determining whether a current speed difference between the front wheels of the vehicle is less than a reference wheel slip for a first predetermined period, determining during a second predetermined period whether a current time rate of speed change of the rear drive shaft is less than a reference rear wheel slip. The clutch is prevented from being engaged if either the speed difference exceeds the reference speed difference, or the time rate of speed change of the rear drive shaft is greater than a reference rear wheel slip. Otherwise, the clutch is engaged.
Abstract:
The invention relates to an asymmetrical, active axle transmission with an epicyclic gear system, which is arranged concentrically to a side shaft (7) and has a planet carrier (17). To achieve an active yaw function, the planet carrier (17) or the central wheel (13) can be braked. Conventional asymmetrical active yaw gears use in this connection two separate brake clutches. This enlarges the construction space and increases the manufacturing costs which the invention avoids in that the planet carrier (17) is part of a first brake coupling (5) and that a second brake clutch (9) for braking the side shaft (7) as well as the first brake clutch (5) use a common abutment lamella (19).