摘要:
The present invention relates to novel compositions and methods to induce, and/or modulate bio-electrical rhythms (e.g. in cardiac, neuronal and pancreatic cells) by fine-tuning the activity of HCN-encoded pacemaker channels via a novel protein- and genetic-engineering approach to augment or attenuate the associated physiological responses (e.g. heart beat, neuronal firing, insulin secretion, etc) for achieving various therapeutic purposes (e.g. sick sinus syndrome, epilepsy, neuropathic pain, diabetes, etc).
摘要:
The present invention relates to novel compositions and methods to induce, and/or modulate bio-electrical rhythms (e.g. in cardiac, neuronal and pancreatic cells) by fine-tuning the activity of HCN-encoded pacemaker channels via a novel protein- and genetic-engineering approach to augment or attenuate the associated physiological responses (e.g. heart beat, neuronal firing, insulin secretion, etc) for achieving various therapeutic purposes (e.g. sick sinus syndrome, epilepsy, neuropathic pain, diabetes, etc).
摘要:
Self-renewable embryonic stem cells (ESCs), derived from the inner cell mass of blastocysts, can propagate indefinitely in culture while maintaining their normal karyotypes and pluripotency to differentiate into all cell types. Therefore, ESCs may provide an unlimited supply of even specialized cells such as brain and heart cells for transplantation and cell-based therapies that are otherwise limited by donor availability. However, this promising application is hampered by concerns that ESCs or their multipotent derivatives also possess the potential to form malignant tumors after transplantation in vivo. The present invention provides for a novel genetic method to arrest undesirable cell division (of ESCs and other unwanted lineages) as a means to inhibit or eliminate their tumorgenic potential after transplantation.
摘要:
Provided are methods of preparing a biocompatible textured surface on a thermoplastic material comprising treating the material with a plasma and subsequently shrinking the substrate to induce formation of textures. The textured surfaces are useful in one aspect, to align cells such as stem cells.