Abstract:
A voltage regulator that is to change its DC output voltage as a primary function of a dynamic portion of integrated circuit (IC) supply current, wherein the voltage regulator's voltage dependence on at least one of a) IC supply leakage current, b) IC supply fixed dock current, or c) load current external to the IC, is a secondary and weaker function. Other embodiments are also described and claimed.
Abstract:
A voltage regulator that is to change its DC output voltage as a primary function of a dynamic portion of integrated circuit (IC) supply current, wherein the voltage regulator's voltage dependence on at least one of a) IC supply leakage current, b) IC supply fixed dock current, or c) load current external to the IC, is a secondary and weaker function. Other embodiments are also described and claimed.
Abstract:
An improvement is presented for connecting conductive components of a built-up circuit board. Rather than using vias or micro vias to connect a conductive layer to a conductive component separated by an insulating layer, an elongated via is used. In one embodiment, the elongated via has a length that is sufficient to directly coupled a first layer to the edge of a via in a lower layer. Thus, it can be said that the elongated via “self-aligns” with the via in the lower layer. In doing so, electrical connections from one side of a circuit board to a component coupled to the other side of the circuit board are more direct leading to a reduction in parasitic induction.
Abstract:
While firing a number of phases of a multi-phase switching voltage regulator in a sequence, a determination is made as to which one of the phases has the lowest phase current. Then, the next phase, to be fired in the sequence, is selected as the one that has been determined to have the lowest phase current. Other embodiments are also described and claimed.
Abstract:
Setting the clock frequency provided to a load circuit as function of the operating temperature and supply voltage of the load circuit, and setting the supply voltage as a function of the operating temperature of the load circuit. The load circuit can be safely operated above the frequency which would be the limit if the load circuit were operating at the maximum test temperature. At the given operating temperature, the supply voltage can be raised to permit even higher frequency operation, or lowered to reduce power.