Abstract:
An electrical module assembly is provided that is configured for latching engagement with a receptacle assembly. The module assembly comprises a module housing having an exterior envelope and an interior cavity. The exterior envelope of the module housing is configured to be plugged into the receptacle assembly. A release mechanism is joined to the module housing. The release mechanism is moveable between locked and unlocked positions. The release mechanism is configured to unlock the module housing from the receptacle assembly when the release mechanism is moved from the locked position to the unlocked position. A detection switch is located within the interior cavity of the module housing. The detection switch monitors a position of the release mechanism and provides latched and unlatched state signals based on the position of the release mechanism. The latched state signal indicates that the module housing is locked in the receptacle assembly. The unlatched state signal indicates that the release mechanism is being moved to the unlocked position.
Abstract:
The present invention relates to a peach-almond hybrid tree, Prunus sp., and more particularly to a new and distinct variety broadly characterized by a very large, extremely vigorous, hardy, self-sterile, productive and regular bearing tree. The fruit matures under the ecological conditions described in early September, with the first picking on Sep. 4, 2004. The tree is commercially useful as a rootstock for almost all prunus species. The variety was developed as a first generation cross using ‘Titan’ (unpatented) almond as the selected seed parent and ‘Nemaguard’ (unpatented) peach as the selected pollen parent.
Abstract:
An electrical connector includes a dielectric housing that holds pairs of signal modules adjacent one another. Each signal module includes a mating edge having a row of mating contacts, a mounting edge having a row of mounting contacts, and a plurality of conductors electrically connecting each mating contact with a respective mounting contact. The mating contacts in adjacent modules have a first contact spacing therebetween, and the mounting contacts in adjacent modules have a second spacing therebetween. The conductors in adjacent modules have a third spacing therebetween. The second and third spacings are selected to provide a pre-determined impedance through the signal modules.
Abstract:
A method for jacketing a product having a generally cylindrical outer surface locates a sheet of jacketing material on first and second belts for conforming the sheet of jacketing material to and pressing the sheet of jacketing material against the outer surface of the product and locates the product on the sheet of jacketing material. Preferably, the belts are mounted on frames that are pivoted from a first position where the sheet of jacketing material can be placed on the belts and the product can be placed on the sheet of jacketing material to a second position where the belts are each wrapped part of the way around the outer surface of the product while the product remains stationary to conform the sheet of jacketing material to and press the sheet of jacketing material against the outer surface of the product so that the sheet of jacketing material may be bonded to the outer surface of the product. When the frames are pivoted from the first position to the second position, the frames draw the belts over the sheet jacket with a force less than that required to crush the product and greater than that required to overcome friction between the belts and the sheet of jacketing material.
Abstract:
A receptacle assembly includes a plurality of guide frames, each of the guide frames having top, bottom and side walls joined to form an interior cavity configured to receive an electrical module. Each of the plurality of guide frames have a heat sink opening extending through one of the top, bottom and side walls. A heat sink is mounted over each of the guide frames and extends through a respective one of the heat sink openings. Each respective heat sink has an engagement surface located proximate the interior cavity of each respective guide frame. The engagement surface of each heat sink is configured to physically contact a respective module when installed in each respective interior cavity. A heat sink clip spans the plurality of guide frames.
Abstract:
The present invention relates to a peach-almond hybrid tree, Prunus sp., and more particularly to a new and distinct variety broadly characterized by a very large, extremely vigorous, hardy, self-sterile, productive and regular bearing tree. The fruit matures under the ecological conditions described in early September, with the first picking on Sep. 4, 2004. The tree is commercially useful as a rootstock for almost all prunus species. The variety was developed as a first generation cross using ‘Titan’ (unpatented) almond as the selected seed parent and ‘Nemaguard’ (unpatented) peach as the selected pollen parent.
Abstract:
A method for jacketing a product having a generally cylindrical outer surface locates a sheet of jacketing material on first and second belts for conforming the sheet of jacketing material to and pressing the sheet of jacketing material against the outer surface of the product and locates the product on the sheet of jacketing material. Preferably, the belts are mounted on frames that are pivoted from a first position where the sheet of jacketing material can be placed on the belts and the product can be placed on the sheet of jacketing material to a second position where the belts are each wrapped part of the way around the outer surface of the product while the product remains stationary to conform the sheet of jacketing material to and press the sheet of jacketing material against the outer surface of the product so that the sheet of jacketing material may be bonded to the outer surface of the product. When the frames are pivoted from the first position to the second position, the frames draw the belts over the sheet jacket with a force less than that required to crush the product and greater than that required to overcome friction between the belts and the sheet of jacketing material.
Abstract:
An opto-electric module for connection with a printed circuit board having a through-hole comprising: (1) a substrate; (2) an opto-electric device electrically connected to the substrate; and (3) a compliant pin coupled to the opto-electric device and extending from the substrate for electrically connecting the through-hole of the printed circuit board with the opto-electric device. The compliant pin enables the opto-electric module to be electrically coupled to the printed circuit board in a one-step process without exposing the opto-electric device to potentially damaging temperatures associated with soldering.