摘要:
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function.
摘要:
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function.
摘要:
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function.
摘要:
Methods and systems are provided that use smartcards, such as subscriber identity module (SIM) cards to provide secure functions for a mobile client. One embodiment of the invention provides a mobile communication network system that includes a mobile network, a mobile terminal, a server coupled to the mobile terminal via the mobile network, and a subscriber identity module (SIM) card coupled to the mobile terminal. The SIM card includes a first key and a second key. The first key is used to authenticate an intended user of the mobile terminal to the mobile network. Upon successful authentication of the intended user to the mobile network, the mobile terminal downloads a function offered from the server through the mobile network. The second key is then used by the mobile terminal to authenticate the intended user to the downloaded function so that the intended user can utilize the function.
摘要:
Synchronized UWB piconets for SOP (Simultaneously Operating Piconet) performance. A common backbone (either wired or wireless) is employed that provides a common CLK (clock signal) to all of the various PNCs (piconet coordinators) of various piconets that may operate within a sufficiently close region such that interference could undesirably occur. By providing a very reliable CLK signal from a common backbone to all of the PNCs of the various piconets operating within a substantially close proximity to one another, very precise synchronization may be ensured for all of the communications performed therein. The various piconets may then even operate using TDMA (Time Division Multiple Access)—whose performance would be substantially compromised without effective synchronization. In addition, combined TFC (time frequency code) and TDMA may also be employed to support the communications therein thereby providing even another degree of orthogonality that provided by TDMA alone.
摘要:
Synchronized UWB piconets for SOP (Simultaneously Operating Piconet) performance. A common backbone (either wired or wireless) is employed that provides a common CLK (clock signal) to all of the various PNCs (piconet coordinators) of various piconets that may operate within a sufficiently close region such that interference could undesirably occur. By providing a very reliable CLK signal from a common backbone to all of the PNCs of the various piconets operating within a substantially close proximity to one another, very precise synchronization may be ensured for all of the communications performed therein. The various piconets may then even operate using TDMA (Time Division Multiple Access)—whose performance would be substantially compromised without effective synchronization. In addition, combined TFC (time frequency code) and TDMA may also be employed to support the communications therein thereby providing even another degree of orthogonality that provided by TDMA alone.
摘要:
Synchronized UWB piconets for SOP (Simultaneously Operating Piconet) performance. A common backbone (either wired or wireless) is employed that provides a common CLK (clock signal) to all of the various PNCs (piconet coordinators) of various piconets that may operate within a sufficiently close region such that interference could undesirably occur. By providing a very reliable CLK signal from a common backbone to all of the PNCs of the various piconets operating within a substantially close proximity to one another, very precise synchronization may be ensured for all of the communications performed therein. The various piconets may then even operate using TDMA (Time Division Multiple Access)—whose performance would be substantially compromised without effective synchronization. In addition, combined TFC (time frequency code) and TDMA may also be employed to support the communications therein thereby providing even another degree of orthogonality that provided by TDMA alone.
摘要:
Synchronized UWB piconets for SOP (Simultaneously Operating Piconet) performance. A common backbone (either wired or wireless) is employed that provides a common CLK (clock signal) to all of the various PNCs (piconet coordinators) of various piconets that may operate within a sufficiently close region such that interference could undesirably occur. By providing a very reliable CLK signal from a common backbone to all of the PNCs of the various piconets operating within a substantially close proximity to one another, very precise synchronization may be ensured for all of the communications performed therein. The various piconets may then even operate using TDMA (Time Division Multiple Access)—whose performance would be substantially compromised without effective synchronization. In addition, combined TFC (time frequency code) and TDMA may also be employed to support the communications therein thereby providing even another degree of orthogonality that provided by TDMA alone.
摘要:
Synchronized UWB piconets for SOP (Simultaneously Operating Piconet) performance. A common backbone (either wired or wireless) is employed that provides a common CLK (clock signal) to all of the various PNCs (piconet coordinators) of various piconets that may operate within a sufficiently close region such that interference could undesirably occur. By providing a very reliable CLK signal from a common backbone to all of the PNCs of the various piconets operating within a substantially close proximity to one another, very precise synchronization may be ensured for all of the communications performed therein. The various piconets may then even operate using TDMA (Time Division Multiple Access)—whose performance would be substantially compromised without effective synchronization. In addition, combined TFC (time frequency code) and TDMA may also be employed to support the communications therein thereby providing even another degree of orthogonality that provided by TDMA alone.
摘要:
A novel solution is presented in which a MAC (Medium Access Controller) is implemented that includes multiple functionality types. This MAC may include functionality supporting communication according to one or more of the IEEE 802.11 WLAN (Wireless Local Area Network) related standards and also to one or more of the standards generated by the IEEE 802.15.3 PAN (Personal Area Network) working group. By providing this dual functionality of a multi-mode WLAN/PAN MAC, a communication device may adaptively change the manner in which it communicates with other communication devices. For example, in an effort to maximize throughput and overall efficiency of communication within a communication system, certain of the various devices may change from using the WLAN related standards to using the PAN related standards, and vice versa, based on any one or more of a variety of operational parameters including system configuration.