摘要:
The present invention describes an in vivo method, using pulsed electric field to deliver therapeutic agents into cells of the skin and muscle for local and systemic treatments. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
In vivo methods are provided for using an electric field to delivery therapeutic treatment to a subject while reducing inducement of histopathological change in the target muscle tissue, such as is associated with induction or amplification of an immune response caused by the pulsed electric field. Therapeutic agents can be delivered nto cells of muscle for local and systemic treatments with optimal gene expression and minimal tissue damage. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
In vivo methods are provided for using an electric field to delivery therapeutic treatment to a subject while reducing inducement of histopathological change in the target muscle tissue, such as is associated with induction or amplification of an immune response caused by the pulsed electric field. Therapeutic agents can be delivered nto cells of muscle for local and systemic treatments with optimal gene expression and minimal tissue damage. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
The present invention describes an in vivo method, using pulsed electric field to deliver therapeutic agents into cells of the skin and muscle for local and systemic treatments. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
Methods are proved for introducing a biologically active agent into cells of a subject by introducing the agent in a form suitable for electrotransport into a region of tissue of the subject using one or more needle-free injectors, and applying a pulsed electric field to the region of tissue, thereby causing electroporation of the region of tissue. The combination of needle-free injection and electroporation is sufficient to introduce the agent into cells in skin, muscle or mucosa. For example, the region of tissue can be contacted with two oppositely charged injectors, one acting as the donor electrode and one acting as the counter electrode, or a single injector and one or more electrodes can be used. In addition, needle-free injection may be used in combination with suitable non-invasive electrode configurations. The active agents delivered into cells using the invention method can be small molecules, polynucleotides, polypeptides, and the like.
摘要:
In vivo methods are provided for using an electric field to delivery therapeutic or immunizing treatment to a subject by applying non-invasive, user-friendly electrodes to the surface of the skin. Thus, therapeutic or immunizing agents can be delivered into cells of skin for local and systemic treatments or for immunization with optimal gene expression and minimal tissue damage. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
In vivo methods are provided for using an electric field to delivery therapeutic or immunizing treatment to a subject by applying non-invasive, user-friendly electrodes to the surface of the skin. Thus, therapeutic or immunizing agents can be delivered into cells of skin for local and systemic treatments or for immunization with optimal gene expression and minimal tissue damage. In particular, therapeutic agents include naked or formulated nucleic acid, polypeptides and chemotherapeutic agents.
摘要:
Methods are provided for introducing a biologically active agent into cells of a subject by injecting the agent with a needle-free injector and applying a pulsed electric field to the region of tissue to cause electrotransport of the agent into cells of the tissue. Preferably the agent is either ionized to some degree or contained in an ionized medium for electrotransport. The needle-free injector can serve as an electrode by which the pulsed electric field is applied to the region of tissue. The active agents delivered into cells by this method include small molecules, polynucleotides, polypeptides, and the like. Polynucleotides introduced into cells using this method can be used to accomplish gene therapy or to modulate expression of an endogenous gene.
摘要:
An electrode assembly for an apparatus for trans-surface molecular includes a non-conductive carrier having a proximal surface, a distal surface, and a plurality of through holes from the proximal surface to the distal surface, a plurality of first electrodes disposed on the proximal surface, a first conductor disposed on at least a first portion of the distal surface and extending through at least a first portion of the plurality of through holes and connected to the first electrodes on the proximal surface, a plurality of second electrodes disposed on the proximal surface, and a second conductor disposed on at least a second portion of the distal surface and extending through at least a second portion of the plurality of through holes and connected to the second electrodes on the proximal surface, wherein the first electrodes and the second electrodes are configured and disposed in closely spaced relation on the proximal surface for engaging the tissue surface and applying an electric field.
摘要:
Methods are provided for introducing a polynucleotide into healthy tissue and generating a pulsed electric field in the tissue via invasive electrodes, resulting in enhanced delivery of the polynucleotide into cells of the tissue, while minimizing local side effects to the electroporated tissue and systemic side effects to the electroporated organism due to metal contaminants released from said electrodes. In one embodiment, the invention methods Use electrodes of gold, gold alloys, or other metal that minimize the introduction of toxic amounts of the metal into electroporated tissue. In other embodiments, the invention methods are utilized for the gene therapy by administering DNA to cells of suitable target tissue, and for the induction of an immune response by administration of a DNA vaccine.