摘要:
An amplifying optical fiber includes an inner core, an inner cladding, a depressed trench, and an outer cladding (e.g., an outer optical cladding). Typically, the inner core includes a main matrix (e.g., silica-based) doped with at least one rare earth element. The depressed trench typically has a volume integral V13 of between about −2200×10−3 μm2 and −1600×10−3 μm2. Exemplary embodiments of the amplifying optical fiber are suitable for use in a compact configuration and high power applications.
摘要:
An amplifying optical fiber includes an inner core, an inner cladding, a depressed trench, and an outer cladding (e.g., an outer optical cladding). Typically, the inner core includes a main matrix (e.g., silica-based) doped with at least one rare earth element. The depressed trench typically has a volume integral V13 of between about −2200×10−3 μm2 and −1600×10−3 μm2. Exemplary embodiments of the amplifying optical fiber are suitable for use in a compact configuration and high power applications.
摘要:
Disclosed is a temperature and strain sensing optical fiber including a first doped radial zone (Z1) with an associated first Brillouin shift (BS1) caused by the doping of said zone (Z1) and a second doped radial zone (Z2) with associated second Brillouin shift (BS2) caused by the doping of said second zone (Z2). The concentration and/or composition of the doping materials in said first and second radial zones are chosen such that the first Brillouin Shift (BS1) is different from the second Brillouin Shift (BS2) for all variations of said Brillouin Shifts (BS1, BS2) caused by temperature and/or strain.
摘要:
A treatment method for an optical fibre including the steps of exposing the fibre to an atmosphere containing deuterium at a given temperature, concentration and pressure, measuring the attenuation in the fibre as a function of time at least one wavelength, during the exposure of the fibre to an atmosphere containing deuterium, identifying an attenuation maximum after an exposure duration, and stopping the exposure of the fibre to the atmosphere containing deuterium when said duration has elapsed.
摘要:
Disclosed is a stimulated Raman scattering effect (SRS), amplifying optical fiber that includes a central core comprising a dielectric matrix that is capable of vibrating at a given frequency (ωRaman) under the effect of a pump signal. The optical fiber includes at least one kind of metallic nanostructure that is capable of generating surface plasmon resonance (SPR) in the optical fiber. The metallic nanostructures have a shape and composition such that the frequency of their surface plasmon resonance (ωplasmon) corresponds to the frequency of the pump signal (ωpump) and/or the frequency of the optical signal transmitted in the optical fiber (ωsignal).
摘要:
An optical fiber includes a central core and an optical cladding. The central core includes a core matrix surrounding nanoparticles. The nanoparticles include rare earths, a nanoparticle matrix, and an outer layer. The nanoparticle matrix surrounds the rare earths, and the outer layer surrounds the nanoparticle matrix. The atomic ratio of nanoparticle matrix atoms other than oxygen to rare earth atoms is typically between about 300 and 1,000. The outer layer, which typically has a thickness of between about 1 nanometer and 2 nanometers, includes an outer layer matrix that is substantially free from rare earths.
摘要:
An optical fiber includes a central core for transmitting and amplifying an optical signal, an optical cladding to confine the optical signal transmitted by the central core, and an outer cladding. The central core is formed of a core matrix and nanoparticles. The nanoparticles are formed of a nanoparticle matrix and rare earth dopants (i.e., a nanoparticle matrix surrounding the rare earth dopants). The optical cladding has a plurality of holes separated by a pitch and extending along the length of the optical fiber.
摘要:
Disclosed is an amplifying optical fiber that includes a central core that is suitable for transmitting and amplifying an optical signal and a surrounding optical cladding that is suitable for confining the optical signal transmitted in the central core. The central core is formed from a main matrix that contains nanoparticles doped with at least one rare earth element. The weight concentration of the rare earth dopants in the nanoparticles is typically between about 1 and 20 percent, and the nanoparticle concentration in the central core's main matrix is between about 0.05 percent and 1 percent by volume. The disclosed optical fiber incorporates rare earth ions at high concentrations yet avoids the phenomenon of photodarkening at high transmission power.
摘要:
The invention relates to an optical waveguide, in particular an optical fibre comprising a core, formed from a material based on rare-earth-ion-doped silica, covered by an optical cladding. Nanoparticles, at least some of which are metal nanoparticles, are dispersed in the material of the core. The optical devices, such as especially optical amplifiers, comprise an optical fibre having a core formed, from a material based on rare-earth-ion-doped silica covered with an optical cladding, nanoparticles, at least some of which are metal nanoparticles, being dispersed in the material of the core, and a pumping source delivering electromagnetic excitation radiation, which propagates in the core.
摘要:
The present invention embraces an optical fiber that includes a central core to transmit optical signals and an optical cladding surrounding the central core to confine transmitted optical signals. The optical fiber typically includes metallic nanostructures for increasing second-order nonlinearity effects. The optical fiber typically has a refractive index profile that ensures a phase-matching condition.