Abstract:
Embodiments concern a method for providing information to a user of a vehicle via a display device that is worn by the user. The method comprises providing a principle axes rotation coordinate system (Vxyz) that defines a vehicle orientation relative to a world coordinate system (Wxyz) of a reference world space; providing at least one display device coordinate system (Dxyz) that defines a display device orientation relative to the vehicle coordinate system; and providing a symbol coordinate system (Sxyz) that is spatially fixed with at least one first symbol to be displayed on the display device and that defines three symbol rotation axes that are orthogonal to each other; and spatially fixing at least one of the symbol rotation axes (Sα) to a vehicle principal axis of rotation descriptive of an orientation of the vehicle.
Abstract:
Head mounted displays (HMD) and corresponding display methods are provided, which obtain, repeatedly, from a monitoring system of a vehicle and, a reference vector relating to the vehicle; display on the HMD a reference symbol that indicates the reference vector; and determine movements of a HMD symbology according to a spatial relation between a received user's line of sight (LOS) and the reference vector. For example, the vehicle may be an aircraft and the reference vector a flight path vector (FPV) received from the aircraft's avionics. The proposed HMD enhances the displayed information content while avoiding excessive movements of the symbology. The HMD's functional parameters may be pre-set or adapted according to user preference and flight stage characteristics. The reference symbol anchors most of the symbology, while minimal critical information may be moved along with the user's LOS, providing a clearer and more stable view through the HMD.
Abstract:
A system for displaying a combined image data from several sources on a head-mounted see-through display (HMSTD) defining a line of sight (LOS) is provided herein. The system includes: a tracker configured to track the LOS of the HMSTD; a display controller configured to display a first display area including a synthetic image data conformal to a scene viewed via the HMSTD; a trigger mechanism configured to select a desired point within the scene which intersects the LOS of the HMSTD at a time of a triggering event, wherein the display controller is configured to receive the desired point and to display a second display area on the HMSTD, wherein the second display area is positioned relative to the desired point, and wherein said display controller is further configured to modify the synthetic image data in a portion of the first display area covered by the second display area.
Abstract:
A system for determining a region of interest for an imaging device based on instrument landing system (ILS) is provided herein. The system may include an imaging device attached to an aircraft; an ILS detector; a computer processor configured in to calculate in a line of sight between said aircraft and a planned touch down point, based on the received ILS signals; a touchdown positioning module executed by the computer processor and configured to calculate a position in a field of view (FOV) of said imaging device which represents the planned touchdown point, based on said line of sight; and a region of interest (ROI) module executed by the computer processor and configured to define a region of interest (ROI) of the imaging device based on said position in said FOV, wherein said computer processor is further configured to apply an image processing operation only to data within said ROI.