Abstract:
An optogenetic neural probe device for transmitting an optical signal to a nerve cell or receiving a fluorescent signal from the nerve cell, including: an optical device alignment substrate; an optical device group on the optical device alignment substrate and including one or more optical devices; and one or more optogenetic neural probes, wherein each optogenetic neural probe from among the one or more optogenetic neural probes may include an optical neural probe substrate, an optical waveguide on the optical neural probe substrate, and an optical signal input/output port, wherein the optogenetic neural probe is configured to transmit the optical signal emitted from the optical device group to the optical signal input/output port through the optical waveguide.
Abstract:
Provided are an ion generation target and a treatment apparatus including the target. The treatment apparatus includes a grid having a net shape of nano wires, an ion generation thin film attached to a side of the grid and generating ions by means of an incident laser beam, and a laser for emitting a laser beam into the nano wire of the grid to generate ions from the ion generation thin film and project the ions onto a tumor portion of a patient. The laser beam emitted into the nano wire forms a near field, the intensity of which is higher than that of the laser beam through a nanoplasmonics phenomenon, and the near field emits the ions from the ion generation thin film.
Abstract:
Disclosed is a sensor and a method of manufacturing the same. The method includes forming a plurality of electrodes on a substrate and forming a sensor layer on the substrate between the plurality of electrodes. The forming of the sensor layer includes coating a nanoparticle layer, providing deionized water on the nanoparticle layer to form a spontaneous transition layer, and annealing the spontaneous transition layer to form the sensor layer.
Abstract:
Provided is a cancer treatment device which includes a first electrode and a second electrode, which are electrically connected to a signal generator and face each other with a target area therebetween, and a temperature sensor which is electrically connected to the signal generator and disposed adjacent to the target area. A cancer cell is present in the target area. The signal generator applies an AC voltage between the first electrode and the second electrode to generate an electric field between the first electrode and the second electrode. The signal generator changes an intensity of the electric field on the basis of a temperature detected from the temperature sensor. Each of the first electrode and the second electrode includes a ferroelectric material doped with manganese.
Abstract:
Provided is an apparatus for generating a proton beam, which includes a laser system providing a laser pulse, a target generating a proton beam by using the laser pulse, and a phase conversion plate disposed between the laser system as a light source and the target to convert the laser pulse into a circularly polarized laser pulse having a spiral shape.
Abstract:
Provided herein is an integrated target structure for generating charged particles. The integrated target structure according to an embodiment of the present disclosure includes a target layer emitting charged particles depending on an irradiation of a laser beam, an optical component controlling at least one of the laser beam and the charged particles, and a support body supporting the target layer and the optical component using one structure.
Abstract:
Provided is an ion beam treatment apparatus including the target. The ion beam treatment apparatus includes a substrate having a first surface and a second surface opposed to the first surface, and including a cone type hole decreasing in width from the first surface to the second surface to pass through the substrate, wherein an inner wall of the substrate defining the cone type hole is formed of a metal, an ion generation thin film attached to the second surface to generate ions by a laser beam incident into the cone type hole through the first surface and strengthen, and a laser that emits a laser beam to generate ions from the ion generation thin film and project the ions onto a tumor portion of a patient. The laser beam incident into the cone type hole is focused by the cone type hole and is strengthened.