摘要:
A hot runner nozzle heater is provided that includes a sleeve defining a slot extending along a length of the sleeve. A first dielectric layer is disposed over an outer surface of the sleeve, and a resistive element layer is disposed over the first dielectric layer, wherein the resistive element layer defines a resistive circuit pattern that is preferably formed by a laser trimming process. A pair of terminal leads are secured to a portion of the resistive element layer thus defining a termination area, and the termination area is positioned proximate the slot and away from the proximal end and the distal end of the sleeve. A second dielectric layer is disposed over the resistive element layer but not over the termination area, a third dielectric layer is disposed over the termination area, and a protective layer disposed over the second dielectric layer and the third dielectric layer.
摘要:
An instrumented heater sleeve is provided that has a plurality of zones, a dielectric layer disposed over an outer surface of the sleeve, a resistive element layer disposed over the first dielectric layer, and a plurality of pairs of lead wires secured to a portion of the resistive element layer. Each pair of lead wires is connected to and corresponds with each of the zones and a protective layer is disposed over the dielectric layer. An amount of power is supplied to each of the zones and adjusted during a test run, or multiple test runs, to achieve a desired temperature profile along a heating target such as a hot runner nozzle. Methods of designing a hot runner nozzle heater using the instrumented heater sleeve are also provided.
摘要:
An instrumented heater sleeve is provided that has a plurality of zones, a dielectric layer disposed over an outer surface of the sleeve, a resistive element layer disposed over the first dielectric layer, and a plurality of pairs of lead wires secured to a portion of the resistive element layer. Each pair of lead wires is connected to and corresponds with each of the zones and a protective layer is disposed over the dielectric layer. An amount of power is supplied to each of the zones and adjusted during a test run, or multiple test runs, to achieve a desired temperature profile along a heating target such as a hot runner nozzle. Methods of designing a hot runner nozzle heater using the instrumented heater sleeve are also provided.
摘要:
A hot runner nozzle heater is provided that includes a sleeve defining a slot extending along a length of the sleeve. A first dielectric layer is disposed over an outer surface of the sleeve, and a resistive element layer is disposed over the first dielectric layer, wherein the resistive element layer defines a resistive circuit pattern that is preferably formed by a laser trimming process. A pair of terminal leads are secured to a portion of the resistive element layer thus defining a termination area, and the termination area is positioned proximate the slot and away from the proximal end and the distal end of the sleeve. A second dielectric layer is disposed over the resistive element layer but not over the termination area, a third dielectric layer is disposed over the termination area, and a protective layer disposed over the second dielectric layer and the third dielectric layer.
摘要:
A tool for removing a split-sleeve heater from a target object, such as a hot runner nozzle body, is provided that includes a handle, a shaft extending from the handle, and a protrusion disposed around at least a portion of a distal end portion of the shaft. The protrusion defines a shoulder, and the shoulder is adapted to engage a removal feature of the split-sleeve heater. In another form, a split-sleeve heater is provided that includes a heater body having opposed ends and a slot extending between the opposed ends. A recess is formed conjointly with the slot proximate at least one of the opposed ends, which is adapted for engagement by a removal tool. Methods of operating the tool and forming the slot of the split-sleeve heater are also provided.
摘要:
A heater assembly is provided that includes a substrate having opposed end portions defining raised flanges, a slot extending between the opposed end portions, and opposed chamfered surfaces extending along the slot and across the raised flanges. In one form, a plurality of layers are disposed onto the substrate, along with a pair of terminal pads. A protective cover defining at least one aperture is disposed over the layers and is secured to the raised flanges and the opposed chamfered surfaces of the substrate, and the aperture is disposed proximate the terminal pads. A pair of lead wires is secured to the pair of terminal pads, and a lead cap assembly is disposed around the pair of lead wires and is secured to the protective cover. Methods of manufacturing the heater assembly are also provided in accordance with the present disclosure.
摘要:
A heater assembly is provided that includes a substrate having opposed end portions defining raised flanges, a slot extending between the opposed end portions, and opposed chamfered surfaces extending along the slot and across the raised flanges. In one form, a plurality of layers are disposed onto the substrate, along with a pair of terminal pads. A protective cover defining at least one aperture is disposed over the layers and is secured to the raised flanges and the opposed chamfered surfaces of the substrate, and the aperture is disposed proximate the terminal pads. A pair of lead wires is secured to the pair of terminal pads, and a lead cap assembly is disposed around the pair of lead wires and is secured to the protective cover. Methods of manufacturing the heater assembly are also provided in accordance with the present disclosure.
摘要:
An electrical heating device for medical equipment is provided. The heating device includes a body, which may be an insulating body forming a channel therethrough for fluid travel, an insulating material surrounding the body, and a heater surrounding the body and the insulating material. In other forms, the electrical heating device for medical equipment has a conducting body, instead of an insulating body, forming a channel therethrough for fluid travel. A base dielectric layer is disposed on the conducting body, and a heater surrounds the base dielectric layer and the conducting body. A top dielectric layer is disposed on the heater, and a protection housing surrounds the top dielectric layer.
摘要:
An electrical heating device for medical equipment is provided. The heating device includes a body, which may be an insulating body forming a channel therethrough for fluid travel, an insulating material surrounding the body, and a heater surrounding the body and the insulating material. In other forms, the electrical heating device for medical equipment has a conducting body, instead of an insulating body, forming a channel therethrough for fluid travel. A base dielectric layer is disposed on the conducting body, and a heater surrounds the base dielectric layer and the conducting body. A top dielectric layer is disposed on the heater, and a protection housing surrounds the top dielectric layer.