摘要:
Certain embodiments herein are directed to enabling service interoperability functionality for wireless fidelity (WiFi) Direct devices connected to a network via a wireless access point. A WiFi Direct device may identify various other WiFi Direct devices on a WiFi network for performing a requested service, such as printing content or displaying content to a screen. In so doing, the device may share information associated with an access point to which the device is connected with the other devices, which may also share information associated with an access point to which they are connected. In this way, WiFi Direct devices may discover their connectivity with respect to other devices to utilize a broader array of connection options for implementing a desired service, and hence, may leverage application programming interface (API) modules directed at providing service interoperability functionality between software applications and services requested by the software applications.
摘要:
Some demonstrative embodiments include apparatuses, systems and/or methods of setting up an Application Service Platform (ASP) Peer-to-Peer (P2P) persistent group. For example, an apparatus may include a first ASP to communicate with a second ASP to setup one or more ASP-P2P groups over a wireless communication link, the first ASP is to form each ASP-P2P group only as an ASP-P2P persistent group extendable over a plurality of distinct sessions, the first ASP is to store credentials of the ASP-P2P persistent group for use during the sessions.
摘要:
Apparatuses, methods, and computer readable media for secure discovery and connection to internet of things devices in a wireless local-area network are disclosed. An apparatus of a station comprising processing circuitry is disclosed. The processing circuitry may be configured to: encode a first packet to indicate to an access point to start discovery of Internet of Things (IoT) devices, and decode a second packet from the access point. The second packet may include identifications of IoT devices unauthenticated with the access point. The processing circuitry may be configured to receive a selection from an application of the station of one of the one or more identifications of the IoT devices, and encode a third packet including the identification of the IoT device and an indication that the access point is to request establishment of a secure session with the IoT device.
摘要:
In an embodiment, a system includes at least one processor having at least one core including a reservation control logic to receive a request from a user device for access at a future time to an enterprise device. The reservation control logic may grant a reservation to the user device to enable the access and schedule delivery of an authentication message to the user device including a credential to enable the user device to set up an ad hoc wireless connection with the enterprise device at the future time, without involvement of a user of the user device. Other embodiments are described and claimed.
摘要:
Techniques for managing the transfer of a wireless connection between wireless networks, channels or bands are described. In some embodiments a method may comprise receiving a request to transfer a wireless connection between the enabling device and a dependent device from a first wireless network to a second wireless network, determining that the dependent device can not initiate a connection in the second wireless network, rejecting the request, and initiating, by the enabling device, the transfer to the second wireless network. Other embodiments are described and claimed.
摘要:
Embodiments of methods and apparatus for dynamic channel allocation are disclosed. In various embodiments, an access point (AP) of an infrastructure based wireless network may allocate one or more wireless channels to wireless devices of a non-infrastructure based wireless network. The allocated channels may be selected to reduce a likelihood of communications among the devices of the non-infrastructure based wireless network interfering with communications among the devices of the infrastructure based wireless network. Additional variants and embodiments may also be disclosed and claimed.
摘要:
Embodiments of methods and apparatus for dynamic channel allocation are disclosed. In various embodiments, an access point (AP) of an infrastructure based wireless network may allocate one or more wireless channels to wireless devices of a non-infrastructure based wireless network. The allocated channels may be selected to reduce a likelihood of communications among the devices of the non-infrastructure based wireless network interfering with communications among the devices of the infrastructure based wireless network. Additional variants and embodiments may also be disclosed and claimed.
摘要:
Embodiments of methods and apparatus for dynamic channel allocation are disclosed. In various embodiments, an access point (AP) of an infrastructure based wireless network may allocate one or more wireless channels to wireless devices of a non-infrastructure based wireless network. The allocated channels may be selected to reduce a likelihood of communications among the devices of the non-infrastructure based wireless network interfering with communications among the devices of the infrastructure based wireless network. Additional variants and embodiments may also be disclosed and claimed.
摘要:
Embodiments of methods and apparatus for dynamic channel allocation are disclosed. In various embodiments, an access point (AP) of an infrastructure based wireless network may allocate one or more wireless channels to wireless devices of a non-infrastructure based wireless network. The allocated channels may be selected to reduce a likelihood of communications among the devices of the non-infrastructure based wireless network interfering with communications among the devices of the infrastructure based wireless network. Additional variants and embodiments may also be disclosed and claimed.
摘要:
Generally discussed herein are systems, apparatuses, and methods that can provide a key authentication and identity verification in a D2D communication regime. A method can include providing a first public key of a first D2D device to a second D2D device and receiving a second public key of the second D2D device, providing a connection request packet to the second D2D device including a first attested key and a third public key, the first attested key including the first public key signed using a private key of a public key attestation service (PAS), receiving a connection accept packet from the second D2D device including a second attested public key, and a fourth public key, the second attested public key including the second public key signed using the private key of the PAS, and verifying the identity of the second D2D device using the received keys.