-
公开(公告)号:US11471784B2
公开(公告)日:2022-10-18
申请号:US17669472
申请日:2022-02-11
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
-
2.
公开(公告)号:US09925477B2
公开(公告)日:2018-03-27
申请号:US15687102
申请日:2017-08-25
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer
CPC classification number: B01D1/0058 , B01D1/2843 , B01D1/2887 , B01D3/001 , B01D3/002 , B01D3/007 , B01D3/14 , Y02P70/34
Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through mechanical vapor compression and to derive mechanical and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Mechanical vapor compression minimizes the total energy usage. Combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
-
公开(公告)号:US11478724B2
公开(公告)日:2022-10-25
申请号:US17834339
申请日:2022-06-07
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
IPC: B01D1/28 , B01D1/26 , B01D3/14 , B01D3/00 , B01D1/00 , B01D9/00 , C07B31/00 , C07B33/00 , C07B35/02 , C07B35/04 , C07B35/08 , C07B37/08 , C07B37/10 , C10B55/00 , C10G7/00 , C10G9/00 , C10G11/00 , C10G31/06 , C10G45/00 , C10G47/00 , C10G49/00 , C10G50/00 , C10G51/00 , C10G53/00 , C10G55/00 , C10G57/00 , C10G59/00 , C10G61/00 , C10G63/00 , C10G65/00 , C10G67/00 , C10G69/00
Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
-
公开(公告)号:US11291927B2
公开(公告)日:2022-04-05
申请号:US17374959
申请日:2021-07-13
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
IPC: B01D1/26 , B01D1/28 , B01D3/14 , B01D3/00 , B01D1/00 , B01D9/00 , C07B31/00 , C07B33/00 , C07B35/02 , C07B35/04 , C07B35/08 , C07B37/08 , C07B37/10 , C10B55/00 , C10G7/00 , C10G9/00 , C10G11/00 , C10G31/06 , C10G45/00 , C10G47/00 , C10G49/00 , C10G50/00 , C10G51/00 , C10G53/00 , C10G55/00 , C10G57/00 , C10G59/00 , C10G61/00 , C10G63/00 , C10G65/00 , C10G67/00 , C10G69/00
Abstract: This disclosure provides systems and methods that utilize integrated mechanical vapor or thermal vapor compression to upgrade process vapors and condense them to recover the heat of condensation across multiple processes, wherein the total process energy is reduced. Existing processes that are unable to recover the heat of condensation in vapors are integrated with mechanical or thermal compressors that raise vapor pressures and temperatures sufficient to permit reuse. Integrating multiple processes permits vapor upgrading that can selectively optimize energy efficiency, environmental sustainability, process economics, or a prioritized blend of such goals. Mechanical or thermal vapor compression also alters the type of energy required in industrial processes, favoring electro-mechanical energy which can be supplied from low-carbon, renewable sources rather than combustion of carbonaceous fuels.
-
公开(公告)号:US11458413B2
公开(公告)日:2022-10-04
申请号:US15711699
申请日:2017-09-21
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through vapor compression and to derive mechanical, thermal, and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Vapor compression (by mechanical vapor recompression and/or thermal vapor recompression) minimizes the total energy usage. Optionally, combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
-
公开(公告)号:US10787407B2
公开(公告)日:2020-09-29
申请号:US16721896
申请日:2019-12-19
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
-
公开(公告)号:US11364449B2
公开(公告)日:2022-06-21
申请号:US17374962
申请日:2021-07-13
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
IPC: B01D1/28 , B01D1/26 , B01D3/14 , B01D3/00 , B01D1/00 , B01D9/00 , C07B31/00 , C07B33/00 , C07B35/02 , C07B35/04 , C07B35/08 , C07B37/08 , C07B37/10 , C10B55/00 , C10G7/00 , C10G9/00 , C10G11/00 , C10G31/06 , C10G45/00 , C10G47/00 , C10G49/00 , C10G50/00 , C10G51/00 , C10G53/00 , C10G55/00 , C10G57/00 , C10G59/00 , C10G61/00 , C10G63/00 , C10G65/00 , C10G67/00 , C10G69/00
Abstract: The present invention utilizes mechanical vapor compression and/or thermal vapor compression integrating compression loops across multiple process stages. A sequential network of compressors is utilized to increase the pressure and condensing temperature of the vapors within each process stage, as intra-vapor flow, and branching between process stages, as inter-vapor flow. Because the vapors available are shared among and between compressor stages, the number of compressors can be reduced, improving economics. Balancing vapor mass flow through incremental compressor stages which traverse multiple process stages by splitting vapors between compressor stages enables the overall vapor-compression system to be tailored to individual process energy requirements and to accommodate dynamic fluctuations in process conditions.
-
公开(公告)号:US11034638B2
公开(公告)日:2021-06-15
申请号:US17008703
申请日:2020-09-01
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
Abstract: A method is disclosed for improving the energy efficiency of biorefinery drying operations through integration of a dryer that utilizes the heat of condensation of process vapors to dry material whose emissions are captured with energy recovery. The dryer separates clean process vapors (e.g., ethanol) and steam from vapors containing volatile organic compounds and entrained materials, to minimize the need for vapor cleanup. An indirect dryer condenses vapors in a tube dryer similar to a steam tube dryer, but utilizing compressed process vapors, transferring the heat to wet material undergoing drying. The resulting exhaust vapors are either directed to a process stage that requires heat (e.g., distillation) and minimizes the need for vapor cleanup or to an out-of-contact heat exchanger that produces vapors for process use, or to another dryer as an additional effect. Mechanical-vapor recompression or thermal-vapor recompression are employed to produce vapors that optimize overall energy recovery.
-
公开(公告)号:US10947486B1
公开(公告)日:2021-03-16
申请号:US16953282
申请日:2020-11-19
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
Abstract: Systems and methods are disclosed for optimizing the process energy required for the conversion of carbon dioxide (CO2) to biochemicals through vapor compression. Mechanical or thermal vapor compression are used to minimize both the process energy and the cooling in condensers, integrating the heat required by those processes and reusing heat that is typically lost. Some variations provide a process for producing biochemicals from biomass, comprising: cooking biomass to release saccharides; fermenting the saccharides to generate a biochemical in aqueous solution, and carbon dioxide; hydrogenating the carbon dioxide with a hydrogen source to generate an additional quantity of biochemical; feeding the fermentation-derived biochemical, as well as the CO2-derived biochemical, to a distillation column for purification; and compressing vapors from the distillation column, using mechanical vapor recompression and/or thermal vapor recompression, to recover heat of distillation that is utilized elsewhere in the biorefinery to reduce overall process energy usage.
-
公开(公告)号:US09925476B2
公开(公告)日:2018-03-27
申请号:US15453881
申请日:2017-03-08
Applicant: Energy Integration, Inc.
Inventor: Lynn Allen Crawford , William Bryan Schafer, III
CPC classification number: B01D1/0058 , B01D1/2843 , B01D1/2887 , B01D3/001 , B01D3/002 , B01D3/007 , B01D3/14 , Y02P70/34
Abstract: Processes and systems are provided to compress vapors produced in distillation and recover the heat of condensation through mechanical vapor compression and to derive mechanical and electrical energy from a combined heat and power system, while maintaining the plant's original ability to operate. The plant's existing distillation system, steam generation, and electrical demand determine the design basis for the retrofit system that is targeted at an optimized combination of energy usage, energy cost, and environmental impact. Mechanical vapor compression minimizes the total energy usage. Combined heat and power provides a means of converting energy between fuel, electricity, and thermal energy in a manner that best complements plant requirements and energy economics and minimizes inefficiencies and energy losses.
-
-
-
-
-
-
-
-
-