Abstract:
The present invention describes a process to isomerize industrial hemp derived Cannabidiol (CBD) to a pure Δ8-tetrahydrocannabinol (Δ8-THC) extract. This procedure will produce Δ8-tetrahydrocannabinol that is essentially free from any detectable levels of Δ9-tetrahydrocannabinol (Δ9-THC). Included in this filing are methods and processes to scale the reaction from the lab to process to large scale manufacturing. Additionally, the resulting extract from said methods and processes consists of higher purity than previously reported in the art and greater efficiency compared to prior art.
Abstract:
The invention a novel, general, and facile strategy for the creation of small molecules with high structural and stereochemical complexity. Aspects of the methods include ring system distortion reactions that are systematically applied to rapidly convert readily available natural products to structurally complex compounds with diverse molecular architectures. Through evaluation of chemical properties including fraction of sp3 carbons, ClogP, and the number of stereogenic centers, these compounds are shown to be significantly more complex and diverse than those in standard screening collections. This approach is demonstrated with natural products (gibberellic acid, adrenosterone, and quinine) from three different structural classes, and methods are described for the application of this strategy to any suitable natural product.
Abstract:
The invention relates to a method for the photochemical isomerization of organic compounds, in particular for the photochemical conversion of tachysterol compounds into previtamin D compounds and of trans-vitamin D compounds into cis-vitamin D compounds, under the influence of radiation, by exposing a solution of the organic compound to be converted in the presence of a non-polymeric photosensitizer to light with approx. 300-1,000 nm wavelength, and by then isolating the resulting product, wherein a substituted thiophene derivative having a substantial absorption in said wavelength region is used as the photosensitizer. The invention also relates to a new photosensitizer to be used for said isomerization reaction.
Abstract:
Provided is a fixed bed heterogeneous catalyst that promotes the isomerization of cis/trans-DMCD to trans-DMCD in economical fashion with short reaction times and in high purity. The catalyst is preferably H.sub.3 PO.sub.4 on a metal oxide, said metal oxide selected from a group consisting of ZrO.sub.2, TiO.sub.2, Al.sub.2 O.sub.3, and HfO.sub.2, or a tungsten-modified ZrO.sub.2.
Abstract translation:提供了一种固定床多相催化剂,其以经济的方式促进顺式/反式-DMCD异构化为反式DMCD,反应时间短且纯度高。 催化剂优选为金属氧化物上的H 3 PO 4,所述金属氧化物选自ZrO 2,TiO 2,Al 2 O 3和HfO 2,或钨改性的ZrO 2。
Abstract:
The present invention describes a process to isomerize industrial hemp derived Cannabidiol (CBD) to a pure Δ8-tetrahydrocannabinol (Δ8-THC) extract. This procedure will produce Δ8-tetrahydrocannabinol that is essentially free from any detectable levels of Δ9-tetrahydrocannabinol (Δ9-THC). Included in this filing are methods and processes to scale the reaction from the lab to process to large scale manufacturing. Additionally, the resulting extract from said methods and processes consists of higher purity than previously reported in the art and greater efficiency compared to prior art.
Abstract:
The invention provides a novel, general, and facile strategy for the creation of small molecules with high structural and stereochemical complexity. Aspects of the methods include ring system distortion reactions that are systematically applied to rapidly convert readily available natural products to structurally complex compounds with diverse molecular architectures. Through evaluation of chemical properties including fraction of sp3 carbons, ClogP, and the number of stereogenic centers, these compounds are shown to be significantly more complex and diverse than those in standard screening collections. This approach is demonstrated with natural products (gibberellic acid, adrenosterone, and quinine) from three different structural classes, and methods are described for the application of this strategy to any suitable natural product.
Abstract:
The present application provides, among other things, compounds and methods for metathesis reactions. In some embodiments, provided compounds promote highly efficient and highly Z-selective metathesis. In some embodiments, provided compounds and methods are particularly useful for producing allyl alcohols. In some embodiments, provided compounds have the structure of formula I. In some embodiments, provided compounds comprise ruthenium, and a ligand bonded to ruthenium through a sulfur atom.
Abstract:
A process of converting a carbon-carbon multiple bond to a cyclopropane ring, comprising the addition of a N-alkyl-N-nitroso compound to a mixture of alkene precursor, aqueous base and Pd(II)-catalyst, with the N-alkyl-N-nitroso compound obtained directly from an alkyl amine derivative, NaNO2 and an acid via phase separation of the N-alkyl-N-nitroso compound from the aqueous phase.