摘要:
An adaptive UWB radar front-end that can a) automatically tune the pulse width for target type and depth; b) automatically sweep specific area by controlling the timing (delay); and, c) for each steering direction, it can automatically adjusts the power distribution for improving radiation pattern and thus improving signal quality for clutter free imaging.
摘要:
A method of surveying the condition of an underground enclosure including the steps of (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
摘要:
A method of surveying the condition of an underground enclosure including the steps of: (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
摘要:
A conduit survey apparatus having a carriage capable of movement axially down a conduit. The carrier includes a radio frequency (RF) signal generator and an RF signal detector positioned on the carriage along with a controller controlling the signal generator and signal detector. The carrier further includes a waveguide with an open throat transmitting signals from the signal generator and directing received signals to the signal detector. Finally, the carrier includes a waveguide positioner mounted on the carrier and adapted to selectively engage an interior wall of the conduit, wherein the waveguide guide is connected to the positioner such that the open throat of the waveguide is within about 1 inch of the interior wall when the positioner engages the interior wall.
摘要:
A method of surveying the condition of an underground enclosure including the steps of: (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
摘要:
A conduit survey apparatus having a carriage capable of movement axially down a conduit. The carrier includes a radio frequency (RF) signal generator and an RF signal detector positioned on the carriage along with a controller controlling the signal generator and signal detector. The carrier further includes a waveguide with an open throat transmitting signals from the signal generator and directing received signals to the signal detector. Finally, the carrier includes a waveguide positioner mounted on the carrier and adapted to selectively engage an interior wall of the conduit, wherein the waveguide guide is connected to the positioner such that the open throat of the waveguide is within about 1 inch of the interior wall when the positioner engages the interior wall.
摘要:
A method of surveying the condition of an underground enclosure including the steps of (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
摘要:
A cured-in-place-pipe (CIPP) liner inspection system used to inspect a resin level in a CIPP liner that has been impregnated with resin using an inspection chamber having an optical sensor. The CIPP liner inspection system is also used to identify zones within an installed CIPP liner having lower mechanical strength due to inadequate distribution of resin using a robotic unit having an optical sensor. The optical sensor measures an optical property, which is used to determine a resin level or a mechanical property based on predetermined correlations between the optical property and the resin level and predetermined correlations between the optical property and the mechanical property.
摘要:
A geopolymer mortar formed by mixing about 35% to about 45% by weight pozzolanic material, about 35% to about 45% by weight silicon oxide source, about 15% to about 20% by weight alkaline activator solution, and about 0.3% to about 2.5% by weight copper ion source. The pozzolanic material may be fly ash and the silicon oxide source may be sand. The alkaline activator solution may be a sodium hydroxide solution containing sodium silicate. The geopolymer mortar may have a viscosity in the range of about 25,000 to about 50,000 centipoise. The geopolymer mortar may be formed by further mixing one or more additives, such as surfactants, thermal spheres, anti-sagging agents, adhesion primers, or fibers. The geopolymer mortar may be applied as a protective coating on a surface of a structure.
摘要:
A geopolymer mortar formed by mixing about 35% to about 45% by weight pozzolanic material, about 35% to about 45% by weight silicon oxide source, about 15% to about 20% by weight alkaline activator solution, and about 0.3% to about 2.5% by weight copper ion source. The pozzolanic material may be fly ash and the silicon oxide source may be sand. The alkaline activator solution may be a sodium hydroxide solution containing sodium silicate. The geopolymer mortar may have a viscosity in the range of about 25,000 to about 50,000 centipoise. The geopolymer mortar may be formed by further mixing one or more additives, such as surfactants, thermal spheres, anti-sagging agents, adhesion primers, or fibers. The geopolymer mortar may be applied as a protective coating on a surface of a structure.