Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
A lead for an electronic device which resists the induction of a current from an electromagnetic field external to said lead includes one or more pairs of adjacent segments of electrical wire, each of the pairs including a first segment of electrical wire and a second segment of electrical wire. The lead also includes one or more shielded RF chokes, wherein each of the shielded RF chokes is provided between the first segment of electrical wire and the second segment of electrical wire of a respective one of the one or more pairs of adjacent segments. Also, an implantable device that includes a generator for generating one or more electrical pulse and a lead as described for delivering the pulses to tissue within a patient's body. A method for making the described implantable device is also provided.
Abstract:
In a magnetic resonance data acquisition method and system for acquiring data from a patient who carries, either intracorporeally or extracorporeally, a foreign object at least partially composed of electrically conductive material, RF heating to the patient due to the presence of the foreign object is minimized by radiating the patient with RF energy by an RF coil that has a coil design. The sequence of pulses to which the patient is subjected to acquire magnetic resonance data from the patient is configured, in combination with the coil design of the RF coil to steer or modify the electric field that arises in the patient so that RF heating in the patient due to the presence of the foreign object is minimized.
Abstract:
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance.
Abstract:
A deflectable tip catheter that is safe and effective for use in a magnetic resonance imaging environment. The deflectable tip catheter is configured such that it includes a built-in antenna, such as a loopless antenna or a loop antenna. The built-in antenna permits the deflectable tip catheter to be actively tracked and/or visualized. Depending upon the specific configuration of the deflectable tip catheter, the catheter may be tracked and/or visualized as a single unit, it may be tracked and/or visualized separate and independent of other components or instruments associated with the catheter, such as pull wires, injection needles, surgical instruments, and the like. The catheters described herein include injection type catheters and/or guidance type catheters.
Abstract:
A method of performing brain therapy may include placing a subject in a main magnetic field, introducing into the subject's brain a combination imaging and therapeutic probe, the probe including a magnetic resonance imaging antenna and an electrical energy application element, acquiring a first magnetic resonance image from the antenna of the combination probe, acquiring a second magnetic resonance image from a surface coil, combining the first and second magnetic resonance images to produce a composite image, positioning the combination probe within the brain with guidance from at least one of the images, and delivering electrical energy to the brain from the electrical energy application element of the combination probe thus positioned.