摘要:
A method of producing volume renderings from magnetic resonance image data in real time with user interactivity. The method comprises collecting raw magnetic resonance image (MRI) data representative of shapes within an image volume; transferring the raw MRI data to a computer; and continuously producing volume renderings from the raw MRI data in real time with respect to the act of collecting raw MRI data representative of shapes within the image volume.
摘要:
A T2 preparation sequence uses a segmented BIR-4 adiabatic pulse with two substantially equal delays and is insensitive to B1 field variations and can simultaneously suppress fat signals with low specific absorption rate (SAR). An adiabatic reverse half passage pulse is applied followed by a predetermined delay. An adiabatic full passage pulse is applied followed by a substantially equal delay, followed by an adiabatic half passage pulse. Fat signal suppression is achieved by increasing or decreasing either the first delay or the second delay.
摘要:
Navigator signals are acquired during a cardiac gated MRI scan to measure the position and velocity components of respiratory motion. Acquired cardiac image views are discarded and/or corrected based on the measurement of the positional and velocity components of respiratory motion to reduce motion artifacts. In one embodiment the navigator pulse sequence includes velocity encoding gradient, and in a second embodiment, velocity is determined by measuring the change in diaphragm position between successive navigator pulse sequences.
摘要:
A method of minimizing dead-periods in magnetic resonance imaging pulse sequences employs a specimen disposed within magnetic field, a source of RF signals, a receiver for receiving signals from the specimen responsive to RF pulses and emitting respective output signals. A computer is provided for receiving the output signals from the receiver and establishing image information which may be displayed. For the dead-period, the minimum and maximum phase encoding step, the scan plane gradient pulse for the slice, phase encoding and readout directions are determined and the moments contained within the dead-period waveform is determined. The values are transformed into gradient amplifier coordinates and the minimum dead-period based on a dead-period waveform is determined. The dead-period is employed in establishing a hardware optimized waveform which may be trapezoidal. The trapezoidal waveform is preferably established by for each phase encoding step determining the starting and ending gradient levels and the moments contained within the dead-period waveform and employing the waveform to design a trapezoidal waveform using the calculated minimum dead-period. The method is particularly advantageous when employed in oblique magnetic resonance imaging. The method may also be employed with velocity-encoded or flow-compensated pulse sequences by employing first gradient moments in the information processing, in addition to the starting and ending gradient levels and the zeroeth moments. For other types of pulse sequences, the zeroeth moment and other higher moments may be employed. Associated apparatus is also disclosed.
摘要:
A method of producing volume renderings from magnetic resonance image data in real time with user interactivity. The method comprises collecting raw magnetic resonance image (MRI) data representative of shapes within an image volume; transferring the raw MRI data to a computer; and continuously producing volume renderings from the raw MRI data in real time with respect to the act of collecting raw MRI data representative of shapes within the image volume.
摘要:
Phase contrast magnetic resonance images are produced using interleaved spiral k-space scanning with a bipolar phase contrast gradient. Spiral scanning is configured so that acquisition impulse response defines a central alias free portion in a partial field of view, and signal acquisition is arranged so that moving spins are contained with this central alias free portion. First and second signals are acquired with alternate phase encodings, and a complex difference of the acquired signals is obtained. The complex difference is substantially free of aliasing artifacts within the central portion.
摘要:
A method that exploits the intrinsic selectivity of steady-state free precession (SSFP) to perform spectral suppression is disclosed. Such a method avoids the need to incorporate additional spectrally selective pulse sequence elements. The scheme is based on breaking the FISP imaging sequence into short trains having, for example, 8–64 RF pulses. At the moment of echo formation (i.e., TE=TR/2) after the last full RF pulse of the train, water signal is z-stored. Residual transverse magnetization, which include isochromats phase-opposed to the on-resonance water, is gradient crushed and RF spoiled. The stored magnetization is subsequently re-excited with little disturbance to the on-resonance steady-state water signal. The additional time required to perform the steady-state interruption is typically as little as a single TR, minimally affecting the efficiency of the imaging process. The sequence can be employed repetitively, greatly reducing the amplitude of fat signals throughout a real-time or cine imaging process.
摘要:
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation. In embodiments which are useful for catheter ablation, the combined electrophysiology and imaging antenna catheter may further include an ablation tip, and such embodiment may be used as an intracardiac device to both deliver energy to selected areas of tissue and visualize the resulting ablation lesions, thereby greatly simplifying production of continuous linear lesions. The invention further includes embodiments useful for guiding electrophysiologic diagnostic and therapeutic procedures other than ablation. Imaging of ablation lesions may be further enhanced by use of MR contrast agents. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type. High-resolution images from the antenna may be combined with low-resolution images from surface coils of the MR scanner to produce a composite image. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance. Other ablative methods can be used such as laser, ultrasound, and low temperatures.
摘要:
A method of magnetic resonance imaging of myocardial motion includes positioning a portion of a patient such as a patient's heart within a main magnetic field and employing a plurality of RF signals to establish a plurality of parallel plane tags through the portion. In imaging heart motion, a first minimum spacing between adjacent tags is employed in a region where the tags will decrease their separation over systole and a second initial tag separation will be employed for portions wherein the tags increase their separation over systole. The method facilitates simultaneous imaging of both such motions. Fourier coefficients may be employed in establishing the generally parallel tags which may be positioned generally symmetrically about a central tag.
摘要:
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance.