摘要:
The present invention relates to a vacuum deposition facility for depositing a metal alloy coating on a substrate (7), said facility being equipped with a vapour generator/mixer comprising a vacuum chamber (6) in the form of an enclosure provided with means for creating a vacuum state therein relative to the external environment and provided with means for the entry and exit of the substrate (7), while still being essentially sealed from the external environment, said enclosure including a vapour deposition head, called the injector (3), configured so as to create a jet of metal alloy vapour of sonic velocity towards the surface of the substrate (7) and perpendicular thereto, said ejector (3) being in sealed communication with a separate mixer device (14), which is itself connected upstream to at least two crucibles (11, 12) respectively, these containing different metals M1 and M2 in liquid form, each crucible (11, 12) being connected to the mixer (14) by its own pipe (4, 4′).
摘要:
The invention relates to a process for coating a metal strip, in which a layer of an oxidizable metal or an oxidizable metal alloy or a metal oxide is vacuum-deposited on a metal strip precoated with zinc or with a zinc alloy, the coated metal strip is then coiled, and the wound coil undergoes a static diffusion treatment so as to obtain a strip having a coating that comprises, in the upper portion, a layer of an alloy formed by diffusion of the oxidizable metal or the oxidizable metal alloy in all or part of the zinc or zinc alloy layer, and also to equipment for implementing the process.
摘要:
A method deposits a metal alloy coating on a substrate using a vacuum deposition facility. The facility is equipped with a vapour generator/mixer comprising a vacuum chamber enclosure provided with an inlet and an outlet for the substrate. The enclosure includes a vapour deposition head and an ejector is provided to create a jet of metal alloy vapour of sonic velocity towards the surface of the substrate and perpendicular thereto. The ejector is in sealed communication with a separate mixer device, which is itself connected upstream to at least two crucibles respectively, these containing different metals in liquid form, each crucible being connected to the mixer by its own pipe. The method uses a series of partitions to create alternating layers of metal vapours. The metal vapours enter the mixer inlet of the mixer at a velocity from 5 to 50 m/s to provide better homogeneity.
摘要:
The invention relates to a process for coating a metal strip, in which a layer of an oxidizable metal or an oxidizable metal alloy or a metal oxide is vacuum-deposited on a metal strip precoated with zinc or with a zinc alloy, the coated metal strip is then coiled, and the wound coil undergoes a static diffusion treatment so as to obtain a strip having a coating that comprises, in the upper portion, a layer of an alloy formed by diffusion of the oxidizable metal or the oxidizable metal alloy in all or part of the zinc or zinc alloy layer, and also to equipment for implementing the process.
摘要:
The present invention relates to a vacuum deposition facility for depositing a metal alloy coating on a substrate (7), said facility being equipped with a vapour generator/mixer comprising a vacuum chamber (6) in the form of an enclosure provided with means for creating a vacuum state therein relative to the external environment and provided with means for the entry and exit of the substrate (7), while still being essentially sealed from the external environment, said enclosure including a vapour deposition head, called the injector (3), configured so as to create a jet of metal alloy vapour of sonic velocity towards the surface of the substrate (7) and perpendicular thereto, said ejector (3) being in sealed communication with a separate mixer device (14), which is itself connected upstream to at least two crucibles (11, 12) respectively, these containing different metals M1 and M2 in liquid form, each crucible (11, 12) being connected to the mixer (14) by its own pipe (4, 4′).
摘要:
The present invention relates to a facility for the continuous vacuum deposition of a metal coating on a substrate in motion, comprising a vacuum deposition enclosure (24), at least one vapor jet deposition head (25,26) connected to an evaporator pot (9) designed to contain the coating metal in liquid form (11), through a vapor supply pipe (20) provided with a distribution valve (19), and a melting furnace (1) for said metal, said furnace being at atmospheric pressure, located below the lowest portion of the evaporator pot (9) and connected to the evaporator pot (9) by at least one automatic supply pipe (8) of the evaporator pot (9) provided with a supply pump (6) and by at least one liquid metal return pipe (8A,18) optionally provided with a valve (16,17), regulating means for the supply pump (6) further being present to regulate a determined liquid metal level in the evaporator pot (9), characterized in that it comprises, in each said supply and return pipes (8; 8A,18), a so-called heat valve area (7,13,15) provided with a heating device and a cooling device to obtain a regulated temperature, independent of that of the melting furnace (1), that prevailing in the remaining portion of said pipes (8,8A,18) and in the evaporator pipe (9), to melt or solidify the metal found in that location.
摘要:
The present invention relates to a facility for the continuous vacuum deposition of a metal coating on a substrate in motion, comprising a vacuum deposition enclosure (24), at least one vapor jet deposition head (25,26) connected to an evaporator pot (9) designed to contain the coating metal in liquid form (11), through a vapor supply pipe (20) provided with a distribution valve (19), and a melting furnace (1) for said metal, said furnace being at atmospheric pressure, located below the lowest portion of the evaporator pot (9) and connected to the evaporator pot (9) by at least one automatic supply pipe (8) of the evaporator pot (9) provided with a supply pump (6) and by at least one liquid metal return pipe (8A,18) optionally provided with a valve (16,17), regulating means for the supply pump (6) further being present to regulate a determined liquid metal level in the evaporator pot (9), characterized in that it comprises, in each said supply and return pipes (8; 8A,18), a so-called heat valve area (7,13,15) provided with a heating device and a cooling device to obtain a regulated temperature, independent of that of the melting furnace (1), that prevailing in the remaining portion of said pipes (8,8A,18) and in the evaporator pipe (9), to melt or solidify the metal found in that location.
摘要:
The present invention provides a process for coating a substrate. A metal alloy layer including at least two metallic elements is continuously deposited on the substrate by a vacuum deposition facility. The facility includes a vapor jet coater for spraying the substrate with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process may advantageously be used for depositing Zn—Mg coatings. The invention also provides a vacuum deposition facility for continuously depositing coatings formed from metal alloys, for implementing the process.
摘要:
The invention relates to a process for coating a substrate (S) whereby a metal alloy layer comprising at least two metallic elements is continuously deposited on the substrate (S) by means of a vacuum deposition facility (1) comprising a vapor jet coater (7) for spraying the substrate (S) with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process is more particularly intended for depositing Zn—Mg coatings.The invention also relates to a vacuum deposition facility (1) for continuously depositing coatings formed from metal alloys, for implementing the process.
摘要:
The invention relates to a process for coating a substrate (S) whereby a metal alloy layer comprising at least two metallic elements is continuously deposited on the substrate (S) by means of a vacuum deposition facility (1) comprising a vapor jet coater (7) for spraying the substrate (S) with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process is more particularly intended for depositing Zn—Mg coatings.The invention also relates to a vacuum deposition facility (1) for continuously depositing coatings formed from metal alloys, for implementing the process.