摘要:
A technique is provided for control of subsea well systems. The technique utilizes a subsea controller coupled to a plurality of subsea well system components to allow localized control of the subsea well system. The subsea controller can be used in a variety of functional applications, such as balancing power distribution to subsea components.
摘要:
A technique is provided for control of subsea well systems. The technique utilizes a subsea controller coupled to a plurality of subsea well system components to allow localized control of the subsea well system. The subsea controller can be used in a variety of functional applications, such as balancing power distribution to subsea components.
摘要:
A subsea communications module includes an interface to communicate with a surface facility over a communications link using a packet-based protocol. The communications link can be implemented with a fiber optic line, wire-based line, and/or other types of communications lines.
摘要:
The present invention discloses a subsea power system for use in capturing “free” or “waste” energy (e.g., thermal, geothermal, pressurized subsurface gases or liquids, wind, wave, solar, or other free, waste, or low cost energy sources) to convert and/or store to power a subsea service or device during times when the free or waste energy supply is not as abundant, is not available, or demands require greater output than is provided at steady state. The subsea power system may include: (1) one or more energy-capturing devices—such as a turbine and/or thermoelectric generator—for harvesting free or waste energy, (2) a fuel cell, electrolyzer, and oxygen and hydrogen storage vessels for harvesting energy from the surrounding seawater, and (3) a power converter for receiving energy from the various sources and converting the energy into a useful form consumable by subsea devices.
摘要:
A technique for subsea intervention operations incorporates use of a compliant guide that extends between a surface location and a subsea installation. The technique facilitates deployment of tool strings into a subsea well. For example, a portion of the compliant guide can be used as a subsea lubricator during pressure deployment of tool strings. In some applications, a tool entry guide can be connected into the subsea installation to facilitate deployment of tool strings into the subsea well.
摘要:
A technique for subsea intervention operations incorporates use of a compliant guide that extends between a surface location and a subsea installation. The technique facilitates deployment of tool strings into a subsea well. For example, a portion of the compliant guide can be used as a subsea lubricator during pressure deployment of tool strings. In some applications, a tool entry guide can be connected into the subsea installation to facilitate deployment of tool strings into the subsea well.
摘要:
A technique for subsea intervention operations enables pressure control to be accomplished at the surface while borehole fluid control is exercised at the seabed. A compliant guide extends between a subsea well installation and a surface location, such as a surface intervention vessel. A buffer fluid is deployed within the compliant guide to maintain the borehole fluids proximate the seabed. The buffer fluid also enables pressure control over the buffer fluid and the borehole fluid to be performed from the surface. Additionally, a flexible conveyance can be used to move intervention tools through the compliant guide.
摘要:
The present invention discloses a subsea power system for use in capturing “free” or “waste” energy (e.g., thermal, geothermal, pressurized subsurface gases or liquids, wind, wave, solar, or other free, waste, or low cost energy sources) to convert and/or store to power a subsea service or device during times when the free or waste energy supply is not as abundant, is not available, or demands require greater output than is provided at steady state. The subsea power system may include: (1) one or more energy-capturing devices—such as a turbine and/or thermoelectric generator—for harvesting free or waste energy, (2) a fuel cell, electrolyzer, and oxygen and hydrogen storage vessels for harvesting energy from the surrounding seawater, and (3) a power converter for receiving energy from the various sources and converting the energy into a useful form consumable by subsea devices.
摘要:
A technique improves the capabilities and performance of subsea intervention operations. An intervention vessel is coupled with a subsea well system via a compliant guide. The structure and arrangement of the compliant guide enables passage of a variety of intervention tools and a variety of conveyance mechanisms to facilitate performance of intervention operations.
摘要:
A technique for subsea intervention operations enables pressure control to be accomplished at the surface while borehole fluid control is exercised at the seabed. A compliant guide extends between a subsea well installation and a surface location, such as a surface intervention vessel. A buffer fluid is deployed within the compliant guide to maintain the borehole fluids proximate the seabed. The buffer fluid also enables pressure control over the buffer fluid and the borehole fluid to be performed from the surface. Additionally, a flexible conveyance can be used to move intervention tools through the compliant guide.