摘要:
An adaptive test system includes one or more reconfigurable test boards, with each test board including at least one re-configurable test processor. The re-configurable test processors can transmit communicate with one another using an inter-processor communications controller associated with each re-configurable test processor. The communications include configuration information, control information, communication protocols, stimulus data, and responses. Configuration information and stimulus data can also be read from a memory. Configuration information is used to configure one or more re-configurable test processors. Once configured, the re-configurable test processor or processors process the data in order to generate one or more test signals. The one or more test signals are then used to test a DUT.
摘要:
An adaptive test system includes one or more reconfigurable test boards, with each test board including at least one re-configurable test processor. The re-configurable test processors can transmit communicate with one another using an inter-processor communications controller associated with each re-configurable test processor. The communications include configuration information, control information, communication protocols, stimulus data, and responses. Configuration information and stimulus data can also be read from a memory. Configuration information is used to configure one or more re-configurable test processors. Once configured, the re-configurable test processor or processors process the data in order to generate one or more test signals. The one or more test signals are then used to test a DUT.
摘要:
An ATE system is described for testing one or more DFT testing blocks contained in one or more DUTs when coupled to the ATE system. The ATE system includes hardware resources and software processes under the control of a DPK (Distributed Processing Kernel). The DPK couples the hardware resources and software processes as needed for a first DFT testing block to be enabled for testing only when such resources and processes are available and locked for the first DFT testing block. The DPK is coupled to the first DFT testing blocks via data channels and control channels that are selected as needed for having the first DFT testing block enabled for testing. The channels are under the control of an DUTs-ATE interface which is directed by the DPK for connecting the first DFT testing block to the locked hardware resource and the locked software processes. Each set up process corresponding to any subsequent DFT testing block requesting any hardware resource and any software processes that are already locked for use is paused until such locked resource and locked software processes are unlocked and assigned for having that subsequent DFT testing block enabled for testing.
摘要:
An ATE system is described for testing one or more DFT testing blocks contained in one or more DUTs when coupled to the ATE system. The ATE system includes hardware resources and software processes under the control of a DPK (Distributed Processing Kernel). The DPK couples the hardware resources and software processes as needed for a first DFT testing block to be enabled for testing only when such resources and processes are available and locked for the first DFT testing block. The DPK is coupled to the first DFT testing blocks via data channels and control channels that are selected as needed for having the first DFT testing block enabled for testing. The channels are under the control of an DUTs-ATE interface which is directed by the DPK for connecting the first DFT testing block to the locked hardware resource and the locked software processes. Each set up process corresponding to any subsequent DFT testing block requesting any hardware resource and any software processes that are already locked for use is paused until such locked resource and locked software processes are unlocked and assigned for having that subsequent DFT testing block enabled for testing.
摘要:
From a logic device comprising logic circuits and a built-in self-test system (BIST) comprising scan chains, diagnostic information is obtained by using the scan chains to apply a stimulus vector to the logic circuits, to capture responses of the logic circuits to the stimulus vector and to shift the captured responses towards the outputs of the scan chains; generating a representative signature representing the responses output by the scan chains; concurrently storing the responses output by the scan chains temporarily such no more than a most-recently output subset of the responses is stored; determining whether the representative signature is a fault-indicating representative signature; and, when the representative signature is a fault-indicating representative signature, outputting at least some of the stored responses. The output responses are usable as diagnostic information. The most-recently output subset of the responses is composed of fewer than all of the responses generated in response to the stimulus vector.
摘要:
From a logic device comprising logic circuits and a built-in self-test system (BIST) comprising scan chains, diagnostic information is obtained by using the scan chains to apply a stimulus vector to the logic circuits, to capture responses of the logic circuits to the stimulus vector and to shift the captured responses towards the outputs of the scan chains; generating a representative signature representing the responses output by the scan chains; concurrently storing the responses output by the scan chains temporarily such no more than a most-recently output subset of the responses is stored; determining whether the representative signature is a fault-indicating representative signature; and, when the representative signature is a fault-indicating representative signature, outputting at least some of the stored responses. The output responses are usable as diagnostic information. The most-recently output subset of the responses is composed of fewer than all of the responses generated in response to the stimulus vector.
摘要:
From a memory device comprising a memory circuit and a built-in self-test system (BIST), diagnostic information is deterministically obtained by using the BIST to perform a test sequence that tests the memory circuit. The test sequence comprises writing one or more test patterns at memory locations in the memory circuit and reading respective output patterns from the memory locations. Diagnostic patterns corresponding to the output patterns are losslessly compressed to generate compressed diagnostic information. The compressed diagnostic information is temporarily stored and, at one or more predetermined points in the test sequence, the compressed diagnostic information is output from the memory device under test. Losslessly compressing the diagnostic patterns and outputting the resulting compressed diagnostic information at predetermined points in the test sequence provides the diagnostic information deterministically, which allows the diagnostic information to be received by conventional, deterministically-operating ATE.
摘要:
An integrated circuit, including a configurable scan architecture used for an integrated circuit test procedure and quality control. The configurable scan chain architecture has the capability of being reconfigured to one of a variety scan chain architectures based on the constraints of the integrated circuit and the testing device. The present invention minimizes the integrated circuit test time by reconfiguring the scan architecture depending on certain constraints such as the latching frequency, the predetermined I/O frequency, the number of available integrated circuit I/O pins, the number of pins required for a proposed scan architecture, and the number of available pins on the testing device. The configurable scan architecture receives configuration signals which indicate which scan chain architecture should be configured on the integrated circuit that is being tested.
摘要:
Embodiments disclosed herein generally relate to line-powered wireless communications systems, and more specifically to methods and apparatus for providing persistent and ubiquitous wireless communications and sensor networks in physical premises to enable a wide variety of different applications and use cases.
摘要:
Systems and methods are provided for testing partially completed three-dimensional ICs. Example methods may incorporate one or more of the following features: design for testing (DFT); design for partial wafer test; design for partial probing; partial IC probecards; partial IC test equipment; partial IC quality determinations; partial IC test optimization; and partial test optimization. Other aspects may also be included. Systems and methods incorporating these features to test partially completed three-dimensional ICs may result in saved time and effort, and less scraped material, as the partial device is not built any further when a bad partial device is detected. This results in lower costs and higher yield.