摘要:
Systems and methods for providing an optimal treatment plan for delivering a prescribed radiation dose to a predefined target volume within a patient using an external beam radiation delivery unit are provided. The systems have an interface which is adapted to receive information related to a prescribed radiation dose, a predefined target volume within a patient, and parameters associated with an external beam delivery unit. The systems also have a treatment plan modeling processor which is adapted to receive all of the input data and develop a dose calculation optimization model defining a global system. The systems also have an optimization processor which is adapted to determine an optimal treatment plan based on the dose calculation optimization model and all the input data. The methods involve (1) receiving information related to the prescribed radiation dose, the predefined target volume, and parameters associated with the external beam delivery unit, (2) developing a dose calculation optimization model based on a plurality of variables corresponding to the information which define a global system, and (3) outputting an optimal treatment plan based on the dose calculation optimization model and the information.
摘要:
A brachytherapy treatment planning method and apparatus employs an integer linear programming model for the placement of seeds and branch-and-bound and genetic techniques for finding optimized solutions for seed placement problems based on the model. The model uses binary indicator variables to represent the placement or non-placement of seeds in a predetermined three-dimensional grid of potential seed locations. In preferred embodiments, the three dimensional grid of potential locations corresponds to intersections of a rectangular grid of holes from a template used to place the seeds with each of a number of parallel cross-sectional images of the tumor and surrounding tissue. The images themselves are discretized into a number of image points at a granularity which may or may not be equal to the granularity of the template. The dose delivered to each image point is modeled as a linear combination of the indicator variables. A system of linear constraints is imposed to attempt to keep the dose level at each image point within specified bounds. The branch-and-bound and genetic methods may either maximize the sum of rewards associated with achieving the specified bounds or minimize the sum of penalties associated with deviating from the desired bounds.
摘要:
Systems and methods for providing an optimal treatment plan for delivering a prescribed radiation dose to a predefined target volume within a patient using an external beam radiation delivery unit are provided. One such method comprises: receiving information corresponding to at least one parameter related to intensity-modulated radiation therapy (IMRT) to be used in developing the optimal treatment plan; receiving information corresponding to at least one clinical objective related to a target volume and a critical structure; developing a treatment plan optimization model based on a plurality of variables corresponding to the at least one parameter related to IMRT and the at least one clinical objective which define a global system; and developing a globally optimal treatment plan which optimizes the at least one clinical objective subject to the at least one parameter.
摘要:
Systems and methods for providing an optimal treatment plan for delivering a prescribed radiation dose to a predefined target volume within a patient using an external beam radiation delivery unit are provided. The systems have an interface which is adapted to receive information related to a prescribed radiation dose, a predefined target volume within a patient, and parameters associated with an external beam delivery unit. The systems also have a treatment plan modeling processor which is adapted to receive all of the input data and develop a treatment plan optimization model defining a global system. The systems also have an optimization processor which is adapted to determine an optimal treatment plan based on the treatment plan optimization model and all the input data.
摘要:
A mathematical contouring algorithm that automatically determines the planning volume of a sarcoma prior to designing a brachytherapy treatment plan. The algorithm, utilizing computational geometry, numerical interpolation and artificial intelligence (AI) techniques, returns the planning volume in digitized and graphical forms in a matter of minutes. Such an automatic procedure reduces labor time and provides a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume allows for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumor control and minimize normal tissue complications.
摘要:
A mathematical contouring algorithm that automatically determines the planning volume of a sarcoma prior to designing a brachytherapy treatment plan. The algorithm, utilizing computational geometry, numerical interpolation and artificial intelligence (AI) techniques, returns the planning volume in digitized and graphical forms in a matter of minutes. Such an automatic procedure reduces labor time and provides a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume allows for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumor control and minimize normal tissue complications.
摘要:
Techniques for planning the placement of seeds for a brachytherapy treatment of diseased tissue include representing a placement or non-placement of a seed in each point of a predetermined three dimensional grid of potential seed locations with a binary indicator variable. A tumor and surrounding tissue are represented as a predetermined three dimensional tissue grid having a plurality of tissue points. At least one of an upper bound and a lower bound for a dose of radiation received is associated with each point in the tissue grid. An objective value is calculated based on a difference at each point of the tissue grid between an amount of radiation based on a trial placement of seeds and the upper bound or the lower bound of both. The trial placement of seeds is varied and the objective value is again calculated, thereby resulting in additional objective values. An optimal objective value is selected from the calculated objective value and the additional objective values. The planned placement of seeds is set based on the trial placement of seeds that obtains the optimal objective value. Preferably, the tumor and surrounding tissue are represented based on biological imaging. A larger upper bound is preferably associated with fast-proliferating tumor cells than with slowly-proliferating tumor cells. Additionally, the tissue grid may represent the tumor and surrounding tissue at a particular time. In some of these cases, the three dimensional grid of potential seed locations at a time of seed insertion is mapped to a new grid of potential seed locations at the particular time.