Abstract:
Circuitry and methods provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a charging pulses of opposite polarity in comparison with write pulses. The charging pulse of opposite polarity may comprise equal or different width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse. A register is also used to keep track of the read pulse polarity such that read pulses of alternating polarity can be used in reading operations.
Abstract:
Circuitry and a method provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a pulse of opposite polarity associated with a write pulse. The pulse of opposite polarity may comprise equal or less width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse.
Abstract:
Circuitry and methods provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a charging pulses of opposite polarity in comparison with write pulses. The charging pulse of opposite polarity may comprise equal or different width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse. A register is also used to keep track of the read pulse polarity such that read pulses of alternating polarity can be used in reading operations.