Abstract:
Techniques for recovering preprogrammed data from non-volatile memory are provided that include majority voting and/or use of one or more levels of ECC correction. Embodiments include storage of multiple copies of the data where ECC correction is performed before and after majority voting with respect to the multiple copies. Multiple levels of ECC correction can also be performed where one level of ECC is performed at the local level (e.g. on-chip), whereas another level of ECC correction is performed at a system level.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
Circuitry and methods provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a charging pulses of opposite polarity in comparison with write pulses. The charging pulse of opposite polarity may comprise equal or different width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse. A register is also used to keep track of the read pulse polarity such that read pulses of alternating polarity can be used in reading operations.
Abstract:
A magnetoresistive memory device that stores data in the reference portion of spin-torque memory cells provides for more robust data storage. In normal operation, the memory cells use the free portion of the memory cell for data storage. Techniques for storing data in the reference portions of memory cells are presented, along with techniques for recovering data stored in the reference portions of memory cells.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
Techniques and circuits for storing and retrieving data using spin-torque magnetic memory cells as anti-fuses are presented. Circuits are included to allow higher-magnitude voltages and currents to be applied to magnetic memory cells to intentionally break down the dielectric layer included the magnetic tunnel junction. Magnetic memory cells having a normal-resistance magnetic tunnel junction with an intact dielectric layer are used to store a first data state, and magnetic memory cells having a magnetic tunnel junction with a broken-down dielectric layer are used to store a second data state. Data can be stored in such a manner during wafer probe and then later read out directly or copied into other magnetic or non-magnetic memory on the device for use in operations after the device is included in a system.
Abstract:
A magnetoresistive memory array including a plurality of magnetoresistive memory elements wherein each magnetoresistive memory element comprises a free layer including at least one ferromagnetic layer having perpendicular magnetic anisotropy, a fixed layer, and a tunnel barrier, disposed between and in contact with the free and fixed layers. The tunnel barrier includes a first metal-oxide layer, having a thickness between 1 and 10 Angstroms, a second metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed on the first metal-oxide layer, and a third metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed over the second metal-oxide layer. In one embodiment, the third metal-oxide layer is in contact with the free layer or fixed layer. The tunnel barrier may also include a fourth metal-oxide layer, having a thickness between 1 and 10 Angstroms, disposed between the second and third metal-oxide layers.
Abstract:
Circuitry and a method provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a pulse of opposite polarity associated with a write pulse. The pulse of opposite polarity may comprise equal or less width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
Techniques for configuring the layers included in the free portion of a spin-torque magnetoresistive device are presented that allow for characteristics of the free portion to be tuned to meet the needs of various applications. In one embodiment, high data retention is achieved by balancing the perpendicular magnetic anisotropy of the ferromagnetic layers in the free portion. In other embodiments, imbalanced ferromagnetic layers provide for lower switching current for the magnetoresistive device. In various embodiments, different coupling layers can be used to provide exchange coupling between the ferromagnetic layers in the free portion, including oscillatory coupling layers, ferromagnetic coupling layers using materials that can alloy with the neighboring ferromagnetic layers, and discontinuous layers of dielectric material such as MgO that result in limited coupling between the ferromagnetic layers and increases perpendicular magnetic anisotropy (PMA) at the interface with those layers.