Implementation of feedback control for improved electrochemical system design

    公开(公告)号:US20210395911A1

    公开(公告)日:2021-12-23

    申请号:US16491781

    申请日:2018-03-06

    Abstract: A method of operating an electrochemical cell including introducing an aqueous solution into the electrochemical cell, applying a current across an anode and a cathode to produce a product, monitoring the voltage, dissolved hydrogen, or a condition of the aqueous solution, and reversing polarity of the anode and the cathode responsive to one of the measured parameters is disclosed. An electrochemical system including an electrochemical cell including an anode and a cathode, a source of an aqueous solution having an outlet fluidly connectable to the electrochemical cell, a sensor for measuring a parameter, and a controller configured to cause the anode and the cathode to reverse polarity responsive to the parameter measurement is disclosed. Methods of suppressing accumulation of hydrogen gas within the electrochemical cell are also disclosed. Methods of facilitating operation of an electrochemical cell are also disclosed.

    Ion exchange membrane through UV initiation polymetrization

    公开(公告)号:US20210340343A1

    公开(公告)日:2021-11-04

    申请号:US17280179

    申请日:2019-09-25

    Abstract: Methods of producing an ion exchange membrane support are disclosed. The methods include saturating a polymeric microporous substrate with a charged monomer solution comprising at least one functional monomer, a cross-linking agent, and an effective amount of at least one photopolymerization initiator and polymerizing the at least one functional monomer by exposing the saturated polymeric microporous substrate to ultraviolet light under conditions effective to cross-link the at least one functional monomer and produce the ion exchange membrane support. Methods of producing a monovalent selective ion exchange membrane are also disclosed. The methods include functionalizing an exterior surface of the ion exchange membrane support with a charged compound layer, drying the ion exchange membrane support and soaking the ion exchange membrane support in a solution comprising an acid or a base for an amount of time effective to produce the monovalent selective ion exchange membrane.

    Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation

    公开(公告)号:US20210139351A1

    公开(公告)日:2021-05-13

    申请号:US16491753

    申请日:2018-03-06

    Abstract: A method of operating an electrochemical cell including introducing an aqueous solution into the electrochemical cell, applying a current across an anode and a cathode to produce a product, monitoring the voltage, dissolved hydrogen, or a condition of the aqueous solution, and applying the current in a pulsed waveform responsive to one of the measured parameters is disclosed. An electrochemical system including an electrochemical cell including an anode and a cathode, a source of an aqueous solution having an outlet fluidly connectable to the electrochemical cell, a sensor for measuring a parameter, and a controller configured to cause the anode and the cathode to apply the current in a pulsed waveform responsive to the parameter measurement is disclosed. Methods of suppressing accumulation of hydrogen gas within the electrochemical cell are also disclosed. Methods of facilitating operation of an electrochemical cell are also disclosed.

    Ion exchange membrane through UV initiation polymerization

    公开(公告)号:US12163001B2

    公开(公告)日:2024-12-10

    申请号:US17280179

    申请日:2019-09-25

    Abstract: Methods of producing an ion exchange membrane support are disclosed. The methods include saturating a polymeric microporous substrate with a charged monomer solution comprising at least one functional monomer, a cross-linking agent, and an effective amount of at least one photopolymerization initiator and polymerizing the at least one functional monomer by exposing the saturated polymeric microporous substrate to ultraviolet light under conditions effective to cross-link the at least one functional monomer and produce the ion exchange membrane support. Methods of producing a monovalent selective ion exchange membrane are also disclosed. The methods include functionalizing an exterior surface of the ion exchange membrane support with a charged compound layer, drying the ion exchange membrane support and soaking the ion exchange membrane support in a solution comprising an acid or a base for an amount of time effective to produce the monovalent selective ion exchange membrane.

    SUB-BLOCK SEALING FOR ELECTROCHEMICAL SEPERATION DEVICES

    公开(公告)号:US20240050902A1

    公开(公告)日:2024-02-15

    申请号:US18209457

    申请日:2023-06-13

    Abstract: An electrochemical separation device includes a first electrode, a second electrode, and a cell stack including a plurality of sub-blocks each having alternating depleting compartments and concentrating compartments and each including frame and channel portions disposed between the first electrode and the second electrode. An internal seal formed of a first material is disposed between and in contact with the channel portions between adjacent sub-blocks in the cell stack and configured to prevent leakage between depleting compartments and concentrating compartments in the adjacent sub-blocks. An external seal formed of a second material having at least one material parameter different from the first material is disposed between and in contact with the frames of the adjacent sub-blocks in the cell stack and configured to prevent leakage from an internal volume of the electrochemical separation device to outside of the electrochemical separation device.

Patent Agency Ranking