Abstract:
Provided is a composition having 70 wt % to 90 wt % of a first propylene-olefin copolymer component having an ethylene content of 15 to 21 wt %; and 10 wt % to 30 wt % of a second propylene-olefin copolymer component having an ethylene content of 6 to 10 wt %; wherein the weight average molecular weight of the first component is 250,000 to 1,780,000 g/mol higher than the weight average molecular weight of the second component; wherein the reactivity ratio product of the first component is less than 0.75; wherein the reactivity ratio product of the second component is greater than or equal to 0.75.
Abstract:
Described is a polyethylene composition comprising at least one polyethylene having a crystallinity of less than 60, or 55, or 50% and within a range from 0.2 wt % to 15 wt % of cyclic-olefin copolymer and within a range from 0.2 wt % to 15 wt % of hydrocarbon resin, by weight of the polyethylene composition. The polyethylene compositions can be formed into useful articles such as films and injection molded and thermoformed articles.
Abstract:
Provided herein is a process for making a grafted cross-linked polymer blend, by polymerizing a first and second polymer solution (each having 75 to 99 wt % propylene-derived units, 1 to 25 wt % ethylene-derived units, and 0.05 to 6 wt % diene-derived units); combining the first and second polymer solution to produce a polymer blend solution; removing solvent from the polymer blend solution to produce a polymer blend; mixing the polymer blend with a coagent and a vinyl-terminated silane compound; subjecting the polymer blend to electron beam irradiation to grafting the vinyl-terminated silane compound to either or both of the first polymer and the second polymer to form a grafted polymer blend; and moisture curing the grafted polymer blend to form a grafted cross-linked polymer blend, wherein the grafted cross-linked polymer blend is substantially free of peroxide.
Abstract:
Provided herein is a process for making a grafted cross-linked polymer blend, by polymerizing a first and second polymer solution (each having 75 to 99 wt % propylene-derived units, 1 to 25 wt % ethylene-derived units, and 0.05 to 6 wt % diene-derived units); combining the first and second polymer solution to produce a polymer blend solution; removing solvent from the polymer blend solution to produce a polymer blend; mixing the polymer blend with a coagent and a vinyl-terminated silane compound; subjecting the polymer blend to electron beam irradiation to grafting the vinyl-terminated silane compound to either or both of the first polymer and the second polymer to form a grafted polymer blend; and moisture curing the grafted polymer blend to form a grafted cross-linked polymer blend, wherein the grafted cross-linked polymer blend is substantially free of peroxide.
Abstract:
A film, preferably, a multi-layered film, including a polymer composition, wherein the polymer composition includes: within a range from 1 wt % to 25 wt % of a cyclic olefin copolymer based on the weight of the polymer composition, and within a range from 75 wt % to 99 wt % (the remainder of material) of a polyethylene based on the weight of the polymer composition, wherein the cyclic olefin copolymer has a glass transition temperature (T.sub.g) of at least 80.degree. C. The films may be used in shrink packaging application.
Abstract:
Described is a polyethylene composition comprising at least one polyethylene having a crystallinity of less than 60, or 55, or 50% and within a range from 0.2 wt % to 15 wt % of cyclic-olefin copolymer and within a range from 0.2 wt % to 15 wt % of hydrocarbon resin, by weight of the polyethylene composition. The polyethylene compositions can be formed into useful articles such as films and injection molded and thermoformed articles.
Abstract:
A film, preferably, a multi-layered film, comprising a polymer composition, wherein the polymer composition comprises: within a range from 1 wt % to 25 wt % of a cyclic olefin copolymer based on the weight of the polymer composition, and within a range from 75 wt % to 99 wt % (the remainder of material) of a polyethylene based on the weight of the polymer composition, wherein the cyclic olefin copolymer has a glass transition temperature (Tg) of at least 80° C. The films may be used in shrink packaging application.